On Hurewicz subsets of \mathbb{R}^n

Marion Scheepers

BEST 17
Outline

1. Lusin- and Sierpinski- sets
2. Some dimension-theory concepts
3. Hurewicz sets.
Outline

1. Lusin- and Sierpinski- sets
2. Some dimension-theory concepts
3. Hurewicz sets.
Lusin and Sierpiński sets.

Lusin sets (1913/4)

Definition

$L \subset \mathbb{R}$ is a Lusin set if:

- $|L| = 2^{\aleph_0}$ and
- for each nowhere dense set $N \subset \mathbb{R}$, $|L \cap N| \leq \aleph_0$

Theorem (Lusin-Mahlo)

$ZFC + CH \vdash \text{There is a Lusin set.}$

Sierpiński sets (1924)

Definition

$S \subset \mathbb{R}$ is a Sierpiński set if:

- $|S| = 2^{\aleph_0}$ and
- for each measure zero set $N \subset \mathbb{R}$, $|S \cap N| \leq \aleph_0$

Theorem (Sierpiński)

$ZFC + CH \vdash \text{There is a Sierpiński set.}$
Lusin and Sierpiński sets.

Lusin sets (1913/4)

Definition

$L \subset \mathbb{R}$ is a Lusin set if:

- $|L| = 2^{\aleph_0}$ and
- for each nowhere dense set $N \subset \mathbb{R}$, $|L \cap N| \leq \aleph_0$

Theorem (Lusin-Mahlo)

$ZFC + CH \vdash$ There is a Lusin set.

Sierpiński sets (1924)

Definition

$S \subset \mathbb{R}$ is a Sierpiński set if:

- $|S| = 2^{\aleph_0}$ and
- for each measure zero set $N \subset \mathbb{R}$, $|S \cap N| \leq \aleph_0$

Theorem (Sierpiński)

$ZFC + CH \vdash$ There is a Sierpiński set.
Lusin and Sierpiński sets.

Lusin sets (1913/4)

Definition

$L \subset \mathbb{R}$ is a Lusin set if:

- $|L| = 2^{\aleph_0}$ and
- for each nowhere dense set $N \subset \mathbb{R}$, $|L \cap N| \leq \aleph_0$

Theorem (Lusin-Mahlo)

$ZFC + CH \vdash$ There is a Lusin set.

Sierpiński sets (1924)

Definition

$S \subset \mathbb{R}$ is a Sierpiński set if:

- $|S| = 2^{\aleph_0}$ and
- for each measure zero set $N \subset \mathbb{R}$, $|S \cap N| \leq \aleph_0$

Theorem (Sierpiński)

$ZFC + CH \vdash$ There is a Sierpiński set.
Lusin and Sierpiński sets.

Lusin sets (1913/4)

Definition

$L \subset \mathbb{R}$ is a Lusin set if:

- $|L| = 2^{\aleph_0}$ and
- for each nowhere dense set $N \subset \mathbb{R}$, $|L \cap N| \leq \aleph_0$

Theorem (Lusin-Mahlo)

$\text{ZFC + CH} \vdash \text{There is a Lusin set.}$

Sierpiński sets (1924)

Definition

$S \subset \mathbb{R}$ is a Sierpiński set if:

- $|S| = 2^{\aleph_0}$ and
- for each measure zero set $N \subset \mathbb{R}$, $|S \cap N| \leq \aleph_0$

Theorem (Sierpiński)

$\text{ZFC + CH} \vdash \text{There is a Sierpiński set.}$
Lusin and Sierpiński sets.

Lusin sets (1913/4)

Definition

$L \subset \mathbb{R}$ is a Lusin set if:

- $|L| = 2^{\aleph_0}$ and
- for each nowhere dense set $N \subset \mathbb{R}$, $|L \cap N| \leq \aleph_0$

Theorem (Lusin-Mahlo)

$\text{ZFC} + \text{CH} \vdash \text{There is a Lusin set.}$

Sierpiński sets (1924)

Definition

$S \subset \mathbb{R}$ is a Sierpiński set if:

- $|S| = 2^{\aleph_0}$ and
- for each measure zero set $N \subset \mathbb{R}$, $|S \cap N| \leq \aleph_0$

Theorem (Sierpiński)

$\text{ZFC} + \text{CH} \vdash \text{There is a Sierpiński set.}$
Lusin and Sierpiński sets.

Lusin sets (1913/4)

Definition

$L \subset \mathbb{R}$ is a Lusin set if:

- $|L| = 2^{\aleph_0}$ and
- for each nowhere dense set $N \subset \mathbb{R}$, $|L \cap N| \leq \aleph_0$

Theorem (Lusin-Mahlo)

$\text{ZFC} + \text{CH} \vdash \text{There is a Lusin set.}$

Sierpiński sets (1924)

Definition

$S \subset \mathbb{R}$ is a Sierpiński set if:

- $|S| = 2^{\aleph_0}$ and
- for each measure zero set $N \subset \mathbb{R}$, $|S \cap N| \leq \aleph_0$

Theorem (Sierpiński)

$\text{ZFC} + \text{CH} \vdash \text{There is a Sierpiński set.}$
Lusin and Sierpiński sets.

Lusin sets (1913/4)

Definition

$L \subset \mathbb{R}$ is a Lusin set if:

- $|L| = 2^{\aleph_0}$ and
- for each nowhere dense set $N \subset \mathbb{R}$, $|L \cap N| \leq \aleph_0$

Theorem (Lusin-Mahlo)

$\text{ZFC + CH} \vdash \text{There is a Lusin set.}$

Sierpiński sets (1924)

Definition

$S \subset \mathbb{R}$ is a Sierpiński set if:

- $|S| = 2^{\aleph_0}$ and
- for each measure zero set $N \subset \mathbb{R}$, $|S \cap N| \leq \aleph_0$

Theorem (Sierpiński)

$\text{ZFC + CH} \vdash \text{There is a Sierpiński set.}$
Lusin and Sierpiński sets.

Lusin sets (1913/4)

Definition

$L \subset \mathbb{R}$ is a Lusin set if:

- $|L| = 2^{\aleph_0}$ and
- for each nowhere dense set $N \subset \mathbb{R}$, $|L \cap N| \leq \aleph_0$

Theorem (Lusin-Mahlo)

$\text{ZFC} + \text{CH} \vdash \text{There is a Lusin set.}$

Sierpiński sets (1924)

Definition

$S \subset \mathbb{R}$ is a Sierpiński set if:

- $|S| = 2^{\aleph_0}$ and
- for each measure zero set $N \subset \mathbb{R}$, $|S \cap N| \leq \aleph_0$

Theorem (Sierpiński)

$\text{ZFC} + \text{CH} \vdash \text{There is a Sierpiński set.}$
Lusin and Sierpiński sets.

Lusin sets (1913/4)

Definition

$L \subset \mathbb{R}$ is a Lusin set if:

- $|L| = 2^{\aleph_0}$ and
- for each nowhere dense set $N \subset \mathbb{R}$, $|L \cap N| \leq \aleph_0$

Theorem (Lusin-Mahlo)

$ZFC + CH \vdash \text{There is a Lusin set.}$

Sierpiński sets (1924)

Definition

$S \subset \mathbb{R}$ is a Sierpiński set if:

- $|S| = 2^{\aleph_0}$ and
- for each measure zero set $N \subset \mathbb{R}$, $|S \cap N| \leq \aleph_0$

Theorem (Sierpiński)

$ZFC + CH \vdash \text{There is a Sierpiński set.}$
Lusin and Sierpiński sets.

Lusin sets (1913/4)

Definition

$L \subset \mathbb{R}$ is a Lusin set if:

- $|L| = 2^{\aleph_0}$ and
- for each nowhere dense set $N \subset \mathbb{R}$, $|L \cap N| \leq \aleph_0$

Theorem (Lusin-Mahlo)

$\text{ZFC }+ \text{CH} \vdash \text{There is a Lusin set.}$

Sierpiński sets (1924)

Definition

$S \subset \mathbb{R}$ is a Sierpiński set if:

- $|S| = 2^{\aleph_0}$ and
- for each measure zero set $N \subset \mathbb{R}$, $|S \cap N| \leq \aleph_0$

Theorem (Sierpiński)

$\text{ZFC }+ \text{CH} \vdash \text{There is a Sierpiński set.}$
Lusin and Sierpiński sets.

Lusin sets (1913/4)

Definition

$L \subset \mathbb{R}$ is a Lusin set if:

- $|L| = 2^{\aleph_0}$ and
- for each nowhere dense set $N \subset \mathbb{R}$, $|L \cap N| \leq \aleph_0$

Theorem (Lusin-Mahlo)

$\text{ZFC} + \text{CH} \vdash \text{There is a Lusin set.}$

Sierpiński sets (1924)

Definition

$S \subset \mathbb{R}$ is a Sierpiński set if:

- $|S| = 2^{\aleph_0}$ and
- for each measure zero set $N \subset \mathbb{R}$, $|S \cap N| \leq \aleph_0$

Theorem (Sierpiński)

$\text{ZFC} + \text{CH} \vdash \text{There is a Sierpiński set.}$
Three fundamental results.

Theorem (Rothberger)

\[\text{ZFC} \vdash \text{CH} \iff \text{there are both a Lusin set and a Sierpiński set}. \]

Theorem (Galvin-Mycielski-Solovay)

If \(L \) is a Lusin set then for each first category set \(M \), \(L+M \neq \mathbb{R} \).

Theorem (Pawlikowski)

If \(L \) is a Sierpiński set then for each Lebesgue measure zero set \(N \), \(L+N \neq \mathbb{R} \).
Three fundamental results.

Theorem (Rothberger)

\[ZFC \vdash CH \iff \text{there are both a Lusin set and a Sierpiński set.} \]

Theorem (Galvin-Mycielski-Solovay)

If \(L \) is a Lusin set then for each first category set \(M \), \(L + M \not= \mathbb{R} \).

Theorem (Pawlikowski)

If \(L \) is a Sierpiński set then for each Lebesgue measure zero set \(N \), \(L + N \not= \mathbb{R} \).
Three fundamental results.

Theorem (Rothberger)

\[\text{ZFC} \vdash \text{CH} \iff \text{there are both a Lusin set and a Sierpiński set.} \]

Theorem (Galvin-Mycielski-Solovay)

If L is a Lusin set then for each first category set M, \(L + M \neq \mathbb{R} \).

Theorem (Pawlikowski)

If L is a Sierpiński set then for each Lebesgue measure zero set N, \(L + N \neq \mathbb{R} \).
Three fundamental results.

Theorem (Rothberger)

\[ZFC \vdash CH \iff \text{there are both a Lusin set and a Sierpiński set.} \]

Theorem (Galvin-Mycielski-Solovay)

If L is a Lusin set then for each first category set M, \(L+M \neq \mathbb{R} \).

Theorem (Pawlikowski)

If L is a Sierpiński set then for each Lebesgue measure zero set N, \(L+N \neq \mathbb{R} \).
Outline

1 Lusin- and Sierpinski- sets

2 Some dimension-theory concepts

3 Hurewicz sets.
Lusin- and Sierpinski- sets

Some dimension-theory concepts

Hurewicz sets.

Two Theorems and Conjecture

Notions of countable dimensionality.

\[C \subset \mathbb{R}^N \text{ is} \]

countable dimensional if:

\(C \) is a union of countably many finite dimensional sets (1928).

strongly countable dimensional if:

\(C \) is a union of countably many closed finite dimensional sets (1959/60).
Notions of countable dimensionality.

\[C \subset \mathbb{R}^N \]

countable dimensional if:

- \(C \) is a union of countably many finite dimensional sets (1928).

strongly countable dimensional if:

- \(C \) is a union of countably many closed finite dimensional sets (1959/60).
Notions of countable dimensionality.

$C \subset \mathbb{R}^N$ is

countable dimensional if:
C is a union of countably many finite dimensional sets (1928).

strongly countable dimensional if:
C is a union of countably many closed finite dimensional sets (1959/60).
C \subset \mathbb{R}^N \text{ is}

countable dimensional if:
C is a union of countably many finite dimensional sets (1928).

strongly countable dimensional if:
C is a union of countably many closed finite dimensional sets (1959/60).
C ⊂ \mathbb{R}^N is

countable dimensional if:
C is a union of countably many finite dimensional sets (1928).

strongly countable dimensional if:
C is a union of countably many closed finite dimensional sets (1959/60).
Basic Facts.

Theorem (Hurewicz)

\[\mathbb{R}^N \text{ is not countable dimensional.} \]

Theorem (Nagami-Smirnov)

\[\mathbb{R}^N \text{ is a union of } \aleph_1 \text{ countable dimensional sets.} \]

Theorem (Folklore)

There are countable dimensional subsets of \(\mathbb{R}^N \) which are not strongly countable dimensional.
Basic Facts.

Theorem (Hurewicz)

\mathbb{R}^n is not countable dimensional.

Theorem (Nagami-Smirnov)

\mathbb{R}^n is a union of \aleph_1 countable dimensional sets.

Theorem (Folklore)

There are countable dimensional subsets of \mathbb{R}^n which are not strongly countable dimensional.
Basic Facts.

Theorem (Hurewicz)
\[\mathbb{R}^n \text{ is not countable dimensional.} \]

Theorem (Nagami-Smirnov)
\[\mathbb{R}^n \text{ is a union of } \aleph_1 \text{ countable dimensional sets.} \]

Theorem (Folklore)
There are countable dimensional subsets of \(\mathbb{R}^n \) which are not strongly countable dimensional.
Basic Facts.

Theorem (Hurewicz)

\mathbb{R}^N is not countable dimensional.

Theorem (Nagami-Smirnov)

\mathbb{R}^N is a union of \aleph_1 countable dimensional sets.

Theorem (Folklore)

There are countable dimensional subsets of \mathbb{R}^N which are not strongly countable dimensional.
Outline

1. Lusin- and Sierpinski- sets
2. Some dimension-theory concepts
3. Hurewicz sets.
Hurewicz sets (1932)

Definition

A subset H of \mathbb{R}^N is a Hurewicz set if

- $|H| = 2^{\aleph_0}$ and
- for each countable dimensional set $N \subseteq \mathbb{R}^N$, $|H \cap N| \leq \aleph_0$.
Hurewicz sets (1932)

Definition

A subset H of \mathbb{R}^N is a Hurewicz set if

- $|H| = 2^{\aleph_0}$ and
- for each countable dimensional set $N \subset \mathbb{R}^N$, $|H \cap N| \leq \aleph_0$
Hurewicz sets (1932)

Definition

A subset H or \mathbb{R}^N is a Hurewicz set if

- $|H| = 2^{\aleph_0}$ and
- for each countable dimensional set $N \subset \mathbb{R}^N$, $|H \cap N| \leq \aleph_0$
Two Theorems and a Conjecture

Theorem (Hurewicz)

\[ZFC \vdash CH \iff \text{There is a Hurewicz set in } \mathbb{R}^N. \]

Theorem

If \(H \subset \mathbb{R}^N \) is a Hurewicz set, then \(H + N \neq \mathbb{R}^N \) (indeed, is first category) for each strongly countable dimensional set \(N \subset \mathbb{R}^N \).

Conjecture

If \(H \subset \mathbb{R}^N \) is a Hurewicz set, then \(H + N \neq \mathbb{R}^N \) for all countable dimensional sets \(N \subset \mathbb{R}^N \).
Two Theorems and a Conjecture

Theorem (Hurewicz)

\[ZFC \vdash CH \iff \text{There is a Hurewicz set in } \mathbb{R}^N. \]

Theorem

If \(H \subseteq \mathbb{R}^N \) is a Hurewicz set, then \(H + N \neq \mathbb{R}^N \) (indeed, is first category) for each strongly countable dimensional set \(N \subseteq \mathbb{R}^N \).

Conjecture

If \(H \subseteq \mathbb{R}^N \) is a Hurewicz set, then \(H + N \neq \mathbb{R}^N \) for all countable dimensional sets \(N \subseteq \mathbb{R}^N \).
Two Theorems and a Conjecture

Theorem (Hurewicz)

\[\text{ZFC} \vdash \text{CH} \iff \text{There is a Hurewicz set in } \mathbb{R}^N. \]

Theorem

If \(H \subset \mathbb{R}^N \) is a Hurewicz set, then \(H + N \neq \mathbb{R}^N \) (indeed, is first category) for each strongly countable dimensional set \(N \subset \mathbb{R}^N \).

Conjecture

If \(H \subset \mathbb{R}^N \) is a Hurewicz set, then \(H + N \neq \mathbb{R}^N \) for all countable dimensional sets \(N \subset \mathbb{R}^N \).
Two Theorems and a Conjecture

Theorem (Hurewicz)

\[\text{ZFC} \models \text{CH} \iff \text{There is a Hurewicz set in } \mathbb{R}^N. \]

Theorem

If \(H \subset \mathbb{R}^N \) is a Hurewicz set, then \(H + N \neq \mathbb{R}^N \) (indeed, is first category) for each strongly countable dimensional set \(N \subset \mathbb{R}^N \).

Conjecture

If \(H \subset \mathbb{R}^N \) is a Hurewicz set, then \(H + N \neq \mathbb{R}^N \) for all countable dimensional sets \(N \subset \mathbb{R}^N \).