Reasonable ultrafilters

Andrzej Rosłanowski

Department of Mathematics
University of Nebraska at Omaha

Report on works done in cooperation with
Saharon Shelah

BEST: Boise, ID, March 2008
Reasonability

Reasonable ultrafilters on uncountable cardinals were introduced in Shelah [Sh:830] in order to suggest a line of research that would in some sense repeat the beautiful theory created around the notion of P–points on ω. The definition of reasonable ultrafilters involves two conditions.

- The first demand, so called the weak reasonability of an ultrafilter, is a way to guarantee that we are not entering the realm of large cardinals: the considered ultrafilter is required to be very non-normal.
- The second part of the definition is a creative re-interpretation of the property that any countable family of members of the ultrafilter has a pseudo-intersection in the ultrafilter.

1 The combinatorics of reasonable ultrafilters. Fund Math 192 (2006)
Reasonable ultrafilters on uncountable cardinals were introduced in Shelah [Sh:830] in order to suggest a line of research that would in some sense repeat the beautiful theory created around the notion of P–points on ω. The definition of reasonable ultrafilters involves two conditions.

- The first demand, so called the *weak reasonability* of an ultrafilter, is a way to guarantee that we are not entering the realm of large cardinals: the considered ultrafilter is required to be *very non-normal*.

- The second part of the definition is a creative re-interpretation of the property that *any countable family of members of the ultrafilter has a pseudo-intersection in the ultrafilter.*

Reasonability

Reasonable ultrafilters on uncountable cardinals were introduced in Shelah [Sh:830]¹ in order to suggest a line of research that would in some sense repeat the beautiful theory created around the notion of \(P\text{-points on } \omega \). The definition of reasonable ultrafilters involves two conditions.

- The first demand, so called the weak reasonability of an ultrafilter, is a way to guarantee that we are not entering the realm of large cardinals: the considered ultrafilter is required to be *very non-normal*.
- The second part of the definition is a creative re-interpretation of the property that *any countable family of members of the ultrafilter has a pseudo-intersection in the ultrafilter*.

¹ The combinatorics of reasonable ultrafilters. Fund Math 192 (2006)
Weak reasonability

Definition: Let D be a uniform ultrafilter on a regular uncountable cardinal λ. We say that D is weakly reasonable, if for every increasing continuous sequence $\langle \delta_\xi : \xi < \lambda \rangle \subseteq \lambda$ there is a club C of λ such that

$$\bigcup \{ [\delta_\xi, \delta_{\xi+1}) : \xi \in C \} \notin D.$$
Ultrafilters from filters on small sets

Let \mathbb{Q}_λ^0 be the collection of all sequences $r = \langle (\alpha_\xi, d_\xi) : \xi < \lambda \rangle$ such that

- $\langle (\alpha_\xi : \xi < \lambda \rangle$ is an increasing continuous sequence of ordinals below λ and
- d_ξ is an ultrafilter on the interval $[\alpha_\xi, \alpha_{\xi+1})$.

For $r \in \mathbb{Q}_\lambda^0$ let $\text{fil}(r)$ be the family of subsets of λ which are eventually large in every interval $[\alpha_\xi, \alpha_{\xi+1})$, that is

$$\text{fil}(r) = \{ A \subseteq \lambda : (\exists \zeta < \lambda)(\forall \xi > \zeta)(A \cap [\alpha_\xi, \alpha_{\xi+1}) \in d_\xi) \}.$$

(The set $\text{fil}(r)$ is a filter on λ.)

We say that $r \leq^0 s$ if and only if $\text{fil}(r) \subseteq \text{fil}(s)$. ($\leq^0$ is a quasi order on \mathbb{Q}_λ^0.)

The demand generalizing P-pointness for an ultrafilter D on λ is:

\[(*) \text{ there is a } (\lambda^+)\text{–directed (with respect to } \leq^0) \text{ family } H \]
\[\text{such that } D = \bigcup \{ \text{fil}(r) : r \in H \}. \]

The family H as above may be called a generating family for the ultrafilter D.

Reasonable ultrafilters are ultrafilters which are weakly reasonable and satisfy the condition $(*)$. (So, reasonable ultrafilters are weakly reasonable ultrafilters with $(\lambda^+)\text{–directed generating families.}$)
The two components are connected

Proposition: [S.Shelah and AR]
Suppose that $\kappa \leq \lambda$ and $H \subseteq Q_\lambda^0$ is a (κ)–directed family such that $D := \bigcup \{ \text{fil}(r) : r \in H \}$ is an ultrafilter on λ. If D is not weakly reasonable, then for some club C of λ the quotient ultrafilter D/C is (κ)–complete and it contains all clubs of λ.
There may be reasonable ultrafilters

Theorem: [S. Shelah and AR]

- Assume $\lambda = \lambda^{<\lambda}$ and $\diamondsuit S^\lambda_{\lambda^+}$ holds. There exists a sequence $\langle r_\xi : \xi < \lambda^+ \rangle \subseteq Q^0_\lambda$ such that

 (i) $(\forall \xi < \zeta < \lambda^+) (r_\xi \leq^0 r_\zeta)$, and
 (ii) the family $D = \bigcup_{\xi < \lambda^+} \text{fil}(r_\xi)$ is an ultrafilter on λ (so it is a reasonable ultrafilter on λ).

- The forcing notion $Q^0_\lambda = (Q^0_\lambda, \leq^0)$ is $(<\lambda^+)$–complete and $\Vdash_{Q^0_\lambda} \text{“ } G_{Q^0_\lambda} \text{ is a reasonable family generating an ultrafilter } \text{“}$.
There may be reasonable ultrafilters

Theorem: [S. Shelah and AR]

- Assume $\lambda = \lambda^{<\lambda}$ and $\diamondsuit S^{\lambda^+}$ holds. There exists a sequence $\langle r_\xi : \xi < \lambda^+ \rangle \subseteq Q^0_\lambda$ such that
 - (i) $(\forall \xi < \zeta < \lambda^+) (r_\xi \leq^0 r_\zeta)$, and
 - (ii) the family $D = \bigcup_{\xi < \lambda^+} \text{fil}(r_\xi)$ is an ultrafilter on λ (so it is a reasonable ultrafilter on λ).

- The forcing notion $Q^0_\lambda = (Q^0_\lambda, \leq^0)$ is $(<\lambda^+)$–complete and $\vdash_{Q^0_\lambda} \text{`` }G_{Q^0_\lambda} \text{ is a reasonable family generating an ultrafilter }$.
Could there be no reasonable ultrafilters?

Problem: Is it consistent that there are no reasonable ultrafilters on \(\lambda \)?

Theorem: [S. Shelah and AR]
Assume \(\lambda \) is a strongly inaccessible cardinal. Then there is a forcing notion \(P \) such that

\[\models_P \text{“} \lambda \text{ is strongly inaccessible and } 2^\lambda = \lambda^{++} \text{ and there is no reasonable ultrafilter on } \lambda \text{ with a generating system of size } < 2^\lambda \text{”} \]
Could there be no reasonable ultrafilters?

Problem: Is it consistent that there are no reasonable ultrafilters on λ?

Theorem: [S.Shelah and AR] Assume λ is a strongly inaccessible cardinal. Then there is a forcing notion P such that

\[\Vdash P \left(\lambda \text{ is strongly inaccessible and } 2^\lambda = \lambda^{++} \text{ and there is no reasonable ultrafilter on } \lambda \text{ with a generating system of size } < 2^\lambda \right) \]
Small generating systems

Theorem: [S.Shelah and AR]
Assume that λ is a strongly inaccessible cardinal. Then there is a forcing notion \mathbb{P} such that

$$\mathbb{P} \models \lambda \text{ is strongly inaccessible and } 2^\lambda = \lambda^{++} \text{ and there is a } (\lambda^+)\text{-directed family } H \subseteq Q^0_\lambda \text{ such that } |H| = \lambda^+ \text{ and } \text{fil}(H) \text{ is an ultrafilter on } \lambda, \text{ in particular there is a reasonable ultrafilter on } \lambda \text{ with generating system of size } < 2^\lambda$$
Weak reasonability game

Definition:
Let D be a uniform ultrafilter on λ. We define a game \mathcal{D}_D between two players, Odd and Even, as follows. A play of \mathcal{D}_D lasts λ steps and during a play an increasing continuous sequence $\bar{\alpha} = \langle \alpha_i : i < \lambda \rangle \subseteq \lambda$ is constructed. The terms of $\bar{\alpha}$ are chosen successively by the two players so that Even chooses the α_i for even i (including limit stages i where she has no free choice) and Odd chooses α_i for odd i. Even wins the play if and only if $\bigcup \{ [\alpha_{2i+1}, \alpha_{2i+2}) : i < \lambda \} \in D$.

Proposition: [S. Shelah]
Assume D is a uniform ultrafilter on λ.
- If D is not weakly reasonable, then Odd has a winning strategy in the game \mathcal{D}_D.
- If λ is strongly inaccessible and Odd has a winning strategy in \mathcal{D}_D, then D is not weakly reasonable.
Weak reasonability game

Definition:
Let D be a uniform ultrafilter on λ. We define a game \mathcal{D}_D between two players, Odd and Even, as follows. A play of \mathcal{D}_D lasts λ steps and during a play an increasing continuous sequence $\bar{\alpha} = \langle \alpha_i : i < \lambda \rangle \subseteq \lambda$ is constructed. The terms of $\bar{\alpha}$ are chosen successively by the two players so that Even chooses the α_i for even i (including limit stages i where she has no free choice) and Odd chooses α_i for odd i. Even wins the play if and only if $\bigcup\{[\alpha_{2i+1}, \alpha_{2i+2}) : i < \lambda\} \in D$.

Proposition: [S. Shelah]
Assume D is a uniform ultrafilter on λ.

- If D is not weakly reasonable, then Odd has a winning strategy in the game \mathcal{D}_D.
- If λ is strongly inaccessible and Odd has a winning strategy in \mathcal{D}_D, then D is not weakly reasonable.
Weak reasonability game

Definition:
Let D be a uniform ultrafilter on λ. We define a game \mathcal{D}_D between two players, Odd and Even, as follows. A play of \mathcal{D}_D lasts λ steps and during a play an increasing continuous sequence $\bar{\alpha} = \langle \alpha_i : i < \lambda \rangle \subseteq \lambda$ is constructed. The terms of $\bar{\alpha}$ are chosen successively by the two players so that Even chooses the α_i for even i (including limit stages i where she has no free choice) and Odd chooses α_i for odd i. Even wins the play if and only if $\bigcup \{ [\alpha_{2i+1}, \alpha_{2i+2}) : i < \lambda \} \in D$.

Proposition: [S. Shelah]
Assume D is a uniform ultrafilter on λ.

- If D is not weakly reasonable, then Odd has a winning strategy in the game \mathcal{D}_D.
- If λ is strongly inaccessible and Odd has a winning strategy in \mathcal{D}_D, then D is not weakly reasonable.
Theorem: [S. Shelah and AR]
Assume that there exists a strongly inaccessible cardinal. Then some forcing notion forces that

“there is a $\leq ^*-$increasing sequence $\langle r_\xi : \xi < \omega_2 \rangle \subseteq \mathcal{Q}_\lambda^0$ such that $D := \bigcup (\{ \text{fil}(r_\xi) : \xi < \omega_2 \})$ is a very reasonable ultrafilter on ω_1 but Odd has a winning strategy in the game \mathcal{D}_D ”.