Notes for Assignment I

Dr. Holmes

August 31, 2009

As promised, I’m posting detailed examples similar or identical to things I did in class.

I will put up notes about Monday’s quantifier proofs later, probably tomorrow morning.

Example 1: Prove

\[(P \land Q) \rightarrow R \leftrightarrow ((P \rightarrow R) \lor (Q \rightarrow R))\]

This could equally well be written

\[P \land Q \rightarrow R \leftrightarrow (P \rightarrow R) \lor (Q \rightarrow R)\]

if we understand the order of operations: ¬ is applied first, followed by \&, then \lor, then \rightarrow, then \leftrightarrow.

Goal:

\[((P \land Q) \rightarrow R) \leftrightarrow ((P \rightarrow R) \lor (Q \rightarrow R))\]

[this is a biconditional so the proof has two parts which are proofs of implications in each direction]

Part 1: Assume (1): \((P \land Q) \rightarrow R\)

Goal: \(((P \rightarrow R) \lor (Q \rightarrow R))\)

[we have a strategy for proving disjunctions – assume that one is false and deduce the other]

Assume(2) : \(\neg(P \rightarrow R)\)

Goal: \(Q \rightarrow R\)
Assume(3) : Q

Goal 1: R

[we adopt the strategy of proof by contradiction]

Assume (4): $\neg R$

Goal: contradiction

[we have a negative hypothesis $\neg(P \rightarrow R)$ above, so we try proving $P \rightarrow R$]

Goal 2: $P \rightarrow R$

Assume(5): P

Goal: R

we deduce (6) $P \land Q$ from (5) and (3).

we deduce (7) R from (1) and (6) by m.p.

This completes the proof of Goal 2 which we can relabel as a conclusion (8) $P \rightarrow R$

(2) and (8) give a contradiction, completing the proof of Goal 1, R, and the proof of the goal of Part I by the usual cascade process (it is odd that (4) is never used)

Part 2: Assume (1): $(P \rightarrow R) \lor (Q \rightarrow R)$

Goal: $(P \land Q) \rightarrow R$

Assume (2): $P \land Q$

Goal: R

[we use proof by cases on assumption (1)]

Case 1: (3) $P \rightarrow R$

Goal: R

from (2) we get (4) P.

from (4) and (3) we get R by m.p., which establishes our goal for Case 1.

Case 2: (3) $Q \rightarrow R$

Goal: R

from (2) we get (4) Q.

From (3) and (4) we get R by m.p.

Having completed both cases we have completed the proof of Part 2 and so of the whole main goal.
Example 2:

\[-(P \lor Q) \leftrightarrow \neg P \land \neg Q\]

This is a biconditional so once again we have a proof in two parts.

Part 1: Assume (1): \(- (P \lor Q)\)

Goal: \(\neg P \land \neg Q\)

[to prove a conjunction we prove each part]

Goal 1: \(\neg P\)

Assume (2): \(P\)

Goal: contradiction

[since we have \(-(P \lor Q)\) as an assumption we try to prove \(P \lor Q\)]

Goal: \(P \lor Q\)

Assume (3): \(\neg Q\)

Goal: \(P\)

we already have the Goal as assumption (2) above (without using (3) at all) so the proof of Goal 1 is complete.

Goal 2: \(\neg Q\)

Assume (2): \(Q\)

Goal: contradiction

[since we have \(-(P \lor Q)\) as an assumption we try to prove \(P \lor Q\)]

Goal: \(P \lor Q\)

Assume (3): \(\neg P\)

Goal: \(Q\)

we already have the Goal as assumption (2) above (without using (3) at all) so the proof of Goal 2 is complete. The proof of Part 1 is complete.

Part 2: Assume (2): \(\neg P \land \neg Q\)

Goal: \(\neg (P \lor Q)\)

Assume (3): \(P \lor Q\)

Goal: contradiction

[we use proof by cases on assumption (3)]
Case 1: (4) \(P \)
Goal: contradiction
(5) \(\neg P \) follows from (2) so we have the desired contradiction between (4) and (5).

Case 2: (4) \(Q \)
Goal: contradiction
now (5) \(\neg Q \) follows from (2) so we have a contradiction between (2) and (5).

with a contradiction in both cases, we are done.