Implementation and Analysis of Different Primality Testing Algorithms

By
Sriharitha Kuchipudi
Agenda

• Introduction
• Applications
• Primality test Algorithm
• Example
• Analysis
• Conclusion
Introduction

• **What is prime?**
 The number which has exactly two distinct natural number divisors: 1 and itself.

• **What is primality?**
 The property of being prime is primality.

• **Primality Test:**
 - The process of proving a number is prime.
 - Some prove number is prime.
 - Some prove number is composite.
Applications of Prime

• Building blocks of the positive integers

• In cryptography

• Hash Functions

• Cicada
Primality Tests

- Mille-Rabin Primality test
- Solovay-Strassen Primality test
- Lucas-Lehmer Primality test
- Lucas Primality test
- Proth’s Test
- Gordon’s algorithm
- Maurer’s algorithm for generating provable primes.
Miller-Rabin Primality Test

MILLER-RABIN(n,t)

INPUT: an odd integer n>=3 and t>=1

OUTPUT: an answer “prime” or “composite”.

• Write n-1 = 2^s*r such that ‘r’ is odd.
• For i from 1 to t do the following:
 Choose a random integer a, 2<=a<=n-2.
 Compute y = a^r mod n.
 If y != 1 and y!= n-1 then do the following:
 j←1.
 While j<= s-1 and y!= n-1 do the following:
 Compute y←y*y mod n.
 If y=1 then return(“composite”).
 j←j+1.
 If y!=n-1 then return(“composite”).
• Return(“prime”).
Example

Suppose we wish to determine if \(n = 11 \) is prime.

- Then \(n-1 = 11-1 = 10 \).
- \(10 = 2^2 \times 5 \) where it is of the form \(2^s \times r \) \(s=1 \) and \(r=5 \)
- Now we can choose a random number ‘\(a \)’ between 2 and 9.
- Let’s take \(a = 3 \) then \(y = 3^5 \mod 11 \)
- \(y = 1 \). As \(y \neq 1 \) and \(y \neq n-1 \) so the given number ‘\(n \)’ is not composite.
Miller-Rabin graph

Miller-Rabin primality test

no of digits

milliseconds

Series1
Solovay-Strassen Primality Test

SOLOVAY-STRASSEN \((n,t)\)

INPUT: an odd integer \(n \geq 3\) and \(t \geq 1\).

OUTPUT: an answer “prime” or “composite” to the question: “Is \(n\) prime?”

- For \(i\) from 1 to \(t\) do the following:
 1.1 Choose a random integer \(a\), \(2 \leq a \leq n-2\).
 1.2 Compute \(r = a^{(n-1)/2} \mod n\)
 1.3 If \(r \neq 1\) and \(r \neq n-1\) then return (“composite”).
 1.4 Compute the Jacobi symbol \(s = (a/n)\)
 1.5 If \(r \neq s \mod n\) then return (“composite”).

- Return (“prime”).
Jacobi symbol

• The **Jacobi symbol** is a generalization of the Legendre symbol.

• Let p be a odd prime and a an integer. The Legendre symbol (a/p) is defined as:

 $$(a/p) = \begin{cases}
 0, & \text{if } a = 0 \pmod{p} \\
 1, & \text{if } a \neq 0 \pmod{p} \text{ and for some integer } x \\
 a = x^2 \pmod{p} \\
 -1, & \text{if there is no such } x
 \end{cases}$$

• Let $n \geq 3$ be odd with prime factorization
 $$n = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots$$

 Then the Jacobi symbol (a/n) is defined to be
 $$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_1} \cdot \left(\frac{a}{p_2}\right)^{e_2} \cdot \ldots$$

• Observe that if n is prime, then the Jacobi symbol is just the Legendre symbol.
Example

Suppose we wish to determine if \(n = 7 \) is prime or composite.

– Then \(n - 1 = 6 \). Let \(a = 4 \).
– Compute \(r = a^{(n-1)/2} \mod 7 = 4^3 \mod 7 = 1 \).
– As \(r = 1 \) it is not composite.
– Jacobi symbol \(s = 1 \)
– \(r = s \) it is prime.
Solovay-Strassen graph

Solovay-Strassen primality test

milli seconds

no of digits
Proth’s Test

- Proth’s theorem is a primality test for proth numbers.
- If a number is of the form \(k \cdot 2^n + 1 \), where \(k \) is odd and \(n \) is a positive integer, then it is a proth number.
- It states that if ‘\(p \)’ is a proth number of the form \(k \cdot 2^n + 1 \) with \(k \) odd and \(k < 2^n \) then if for some integer \(a \),

\[
 a^{(p-1)/2} \equiv -1 \pmod{p}
\]

Then ‘\(p \)’ is called proth prime.
Example

• For $p = 13$, where 13 is a proth number.
• That is $13 = 2^{2*3}+1$ where $n=2$ and $k=3$
• For $a = 5$, $a^{(p-1)/2} = 15625$
• $5^6 + 1 = 15626$ is divisible by 13, so 13 is prime
Lucas Test

- Lucas test is a primality test for a natural number ‘n’ and it requires prime factors of n-1.

Input: $n > 2$, an odd integer to be tested for primality; k,

Output: *prime* if n is prime, otherwise *composite* or *possibly*

- determine the prime factors of $n-1$.
- LOOP1: repeat k times:
 - pick a randomly in the range $[2, n - 1]$ if $a^{n-1} \neq 1 \pmod{n}$ then return *composite* otherwise

- LOOP2: for all prime factors q of $n-1$:
 - if $a^{(n-1)/q} \neq 1 \pmod{n}$
 - if we did not check this equality for all prime factors of $n-1$ then do next LOOP2

- otherwise return *prime* otherwise do next LOOP1 return *possibly composite*.
Example

Suppose we wish to determine if \(n = 5 \) is prime or composite.

- Let \(a = 3 \). \(a^{n-1} \mod n = 3^4 \mod 5 = 1 \).
- As it is not composite we will enter loop 2.
- Here prime factor of \(n-1 \) i.e., 4 is 2.
- \(n-1/2 = 4/2 = 2 \).
- \(a^{n-1/q} \mod n = 3^2 \mod 5 \) which is not equal to 1.
- Therefore given number is prime.
Lucas graph

Lucas primality test

Milliseconds vs. no of digits graph.
Lucas-Lehmer Primality Test

- Lucas-Lehmer test is the primality test for Mersenne numbers.
- Mersenne number is a positive integer that is one less than a power of two.

\[M = 2^s - 1 \]

INPUT: a Mersenne number \(n = 2^s - 1 \) with \(s \geq 3 \).

OUTPUT: an answer “prime” or “composite” to the question: “Is \(n \) prime?”

- Use trail division to check if \(s \) has any factors between 2 and \(\sqrt{s} \). If it does, then return (“composite”).
- Set \(u \leftarrow 4 \).
- For \(k \) from 1 to \(s-2 \) do the following: Compute \(u \leftarrow ((u* u) - 2) \mod n \).
- If \(u = 0 \) then return (“prime”). Otherwise, return (“Composite”).
Example

• Suppose we wish to determine if $M = 7$ is a mersenne prime or not.
• $7 = 2^3 - 1$. Therefore M is a mersenne number and $s=3$.
• Now $u = (4*4)-2 \mod 7 = 14 \mod 7 = 0$
• The number is mersenne prime
Lucas-Lehmer graph
Gordon’s algorithm

• Gordon’s algorithm generates strong primes.

• A prime number p is said to be a *strong prime* if integers r, s, and t exist such that the following three conditions are satisfied:
 - $p - 1$ has a large prime factor, denoted r;
 - $p + 1$ has a large prime factor, denoted s; and
 - $r - 1$ has a large prime factor, denoted t.
Gordon’s algorithm

• Output: a strong prime p is generated.
 – Generate two large random primes ‘s’ and ‘t’ of roughly equal bit length
 – Select an integer i_0. Find the first prime in the sequence $2it+1$, for $i = i_0, i_0 + 1, \ldots$. Denote this prime by $r = 2it + 1$.
 – Compute $p_0 = 2(\mod r)s-1$.
 – Select an integer j_0. Find the first prime in the sequence $p_0 + 2jrs$, for $j = j_0, j_0 + 1, \ldots$. Denote this prime by $p = p_0 + 2jrs$.
 – Return(p).
Gordon’s graph

![Graph showing the relationship between time in ms and the number of bits.]
Maurer’s algorithm

- Maurer’s algorithm (Algorithm 4.62) generates random *provable primes that are almost* uniformly distributed over the set of all primes of a specified size.

- A **provable prime** is an integer that is either constructed to be prime or is calculated to be prime using a primality-proving algorithm.
Maurer’s algorithm

• PROVABLE_PRIME(k)
 INPUT: a positive integer k.
 OUTPUT: a k-bit prime number n

• If k <= 20 then repeatedly do the following:
 1.1 Select a random k-bit odd integer n.
 1.2 Use trail division by all primes less than k to determine whether n is prime.
 1.3 If n is prime then return(n).

• Set c ← 0.1 and m ← 20
• Set B ← c\cdot k^k
• If k > 2m then repeatedly do the following: select a random number s in the interval [0,1], set r ← s, until (k − r\cdot k) > m. Otherwise (i.e. k <= 2m),
• set r ← 0.5.
Maurer’s algorithm

- Compute \(q \leftarrow \text{PROVABLE_PRIME}([r*k]+1) \).
- Set \(I \leftarrow \lceil/2q\rceil \).
- Success \(\leftarrow 0 \).
- While (success = 0) do the following:
 - Select a random integer \(R \) in the interval \([I+1, 2I]\) and set \(n \leftarrow 2Rq + 1 \).
 - Use trail division to determine whether \(n \) is divisible by any prime number \(< B \).
 - If it is not then do the following:
 - Select a random integer \(a \) in the interval \([2, n-2]\).
 - Compute \(b \leftarrow \text{mod } n \).
 - If \(b = 1 \) then do the following:
 - Compute \(b \leftarrow \text{mod } n \) and \(d \leftarrow \text{gcd}(b-1, n) \).
 - If \(d = 1 \) then success \(\leftarrow 1 \).
- Return (n).
Maurer’s graph

Maurer’s algorithm
Conclusion

• There are infinite number of primes and every day they discover a new prime.
• Largest one is 4,053,946 digits
• No real formula or algorithm will find all the primes
Questions?