Continued Fractions Factoring method

Cryptology I
Trial division

Is there a good algorithm for factoring a given integer \(n \)?
Is there a good algorithm for factoring a given integer n?

Let n be a number which is a product of two 50 digit prime numbers.
Is there a good algorithm for factoring a given integer n?

Let n be a number which is a product of two 50 digit prime numbers.

- We need approximately 10^{50} steps of trial division.
Is there a good algorithm for factoring a given integer n?

Let n be a number which is a product of two 50 digit prime numbers.

- We need approximately 10^{50} steps of trial division.
- Assume that every step takes 10^{-10} seconds.
Trial division

Is there a good algorithm for factoring a given integer n?

Let n be a number which is a product of two 50 digit prime numbers.

- We need approximately 10^{50} steps of trial division.
- Assume that every step takes 10^{-10} seconds.
- We need to wait for 10^{40} seconds (~ 1032 years).
RSA Factoring Challenge

The **RSA Challenge problem** is the problem of finding the factorization of the RSA modulus n.

The **RSA Challenge problem** is the problem of finding the factorization of the RSA modulus n.

- **RSA-100**: 1522605027922533360535618378132637429718068114961380688657908494580122963258952897654000350692006139

RSA Factoring Challenge

The **RSA Challenge problem** is the problem of finding the factorization of the RSA modulus n.

- **RSA-100**: 1522605027922533360535618378132637429718068114961380688657908494580122963258952897654000350692006139

- **RSA-768**: 1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413

RSA Factoring Challenge

The **RSA Challenge problem** is the problem of finding the factorization of the RSA modulus n.

- **RSA-100:** $15226050279225333605356183781326374297180681149613\ 80688657908494580122963258952897654000350692006139$
- **RSA-768:**
 - $1230186684530117755130494958384962720772853569595334\ 7921973224521517264005072636575187452021997864693899\ 5647494277406384592519255732630345373154826850791702\ 6122142913461670429214311602221240479274737794080665\ 351419597459856902143413$

An expression of the form

$$x = a_0 + \frac{b_1}{a_1 + \frac{b_2}{a_2 + \frac{b_{n-1}}{a_{n-1} + \frac{b_n}{a_n}}}$$

is called a continued fraction.
It is called simple continued fraction if all the b_i's are 1 and all the a_i's are integers such that $a_1, a_2, \ldots \geq 1$.
We can denote the simple continued fraction with

\[
[a_1, a_2, \ldots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_n}}}}
\]

\[C_k = [a_1, a_2, \ldots, a_k]\] for \(k \leq n\) is called the \textbf{k-th convergent of the simple continued fraction}.

Continued Fractions
Infinite Continued fractions

The infinite continued fraction, \([a_1, a_2, ..., a_k, ...]\) is defined as a limit of the convergents \(C_k = [a_1, a_2, ..., a_k]\).

Theorem

Every real number can be expressed as a continued fraction.
The infinite continued fraction, \([a_1, a_2, ..., a_k, ...]\) is defined as a limit of the convergents \(C_k = [a_1, a_2, ..., a_k]\).

Theorem

Every real number can be expressed as a continued fraction.

Theorem

Suppose that \(p_k/q_k\) is the \(k\)-th convergent of \(\sqrt{n}\). Then
Infinite Continued fractions

The **infinite continued fraction**, \([a_1, a_2, \ldots, a_k, \ldots]\) is defined as a limit of the convergents \(C_k = [a_1, a_2, \ldots, a_k]\).

Theorem

Every real number can be expressed as a continued fraction.

Theorem

Suppose that \(p_k/q_k\) is the \(k\)-th convergent of \(\sqrt{n}\). Then

\[
p_k^2 - nq_k^2 = (-1)^{k+1} B_{k+1}.
\]
Continued Fractions

Continued Fraction Method CFRAC

3

Successfully factored $F_7 = 2^{128} + 1$.

First method with subexponential running time.

Most efficient general factorization method.

Foundation for QS and NFS factoring methods.

Successfully factored $F_7 = 2^{128} + 1$.

Continued Fraction Method CFRAC \(^3\)

- Successfully factored \(F_7 = 2^{128} + 1\).
- First method with subexponential running time.

\(^3\) M.A. Morrison and J. Brillhart, “A method of factoring and Factorization of \(F_7\),” (1975)
Continued Fraction Method CFRAC

- Successfully factored $F_7 = 2^{128} + 1$.
- First method with subexponential running time.
- Most efficient general factorization method.

Continued Fraction Method CFRAC

- Successfully factored $F_7 = 2^{128} + 1$.
- First method with subexponential running time.
- Most efficient *general* factorization method.

Continued Fraction Method CFRAC

- Successfully factored $F_7 = 2^{128} + 1$.
- First method with subexponential running time.
- Most efficient general factorization method.
- Foundation for QS and NFS factoring methods.

Gaussian Elimination

Gaussian elimination is an efficient algorithm for solving system of linear equations.

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
 & \vdots \quad \vdots \quad \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m.
\end{align*}
\]

where \(x_1, x_2, \ldots, x_n\) are the unknown variable, \(a_{11}, a_{12}, \ldots, a_{mn}\) are the coefficients of the system, and \(b_1, b_2, \ldots, b_m\) are the constant terms.
Gaussian Elimination

The system of linear equations is equivalent to a matrix equation of the form

\[A \cdot x = b \]

where \(A \) is an \(m \times n \) matrix, \(x \) is a column vector with \(n \) entries, and \(b \) is a column vector with \(m \) entries.

\[
A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}
\]
Gaussian Elimination-Example

We have the following system of equations

\[
\begin{align*}
2x - 3y + z + 2w + 3v &= 4 \\
4x - 4y + z + 4w + 11v &= 4 \\
2x - 5y - 2z + 2w - v &= 9 \\
4 - 2y + z + 4v &= -5
\end{align*}
\]

http://www.sosmath.com
Gaussian Elimination - Example

We have the following system of equations

\[
\begin{align*}
2x - 3y + z + 2w + 3v &= 4 \\
4x - 4y + z + 4w + 11v &= 4 \\
2x - 5y - 2z + 2w - v &= 9 \\
4 - 2y + z + 4v &= -5
\end{align*}
\]

The corresponding matrix equation is

\[
\begin{pmatrix}
2 & -3 & -1 & 2 & 3 & | & 4 \\
4 & -4 & -1 & 4 & 11 & | & 4 \\
2 & -5 & -2 & 2 & -1 & | & 9 \\
0 & 2 & 1 & 0 & 4 & | & -5
\end{pmatrix}
\]

\[\text{http://www.sosmath.com}\]
Gaussian Elimination-Example

5 We use elementary row operations to transform this matrix into a triangular one. We keep the first row and use it to produce all zeros elsewhere in the first column. We have

$$
\begin{pmatrix}
2 & -3 & -1 & 2 & 3 & 4 \\
0 & 2 & 1 & 0 & 5 & -4 \\
0 & -2 & -1 & 0 & -4 & 5 \\
0 & 2 & 1 & 0 & 4 & -5
\end{pmatrix}.
$$

\[5\text{ http://www.sosmath.com}\]
5 We use elementary row operations to transform this matrix into a triangular one. We keep the first row and use it to produce all zeros elsewhere in the first column. We have

\[
\begin{pmatrix}
2 & -3 & -1 & 2 & 3 & 4 \\
0 & 2 & 1 & 0 & 5 & -4 \\
0 & -2 & -1 & 0 & -4 & 5 \\
0 & 2 & 1 & 0 & 4 & -5
\end{pmatrix}.
\]

Continuing like this we get the following triangular matrix

\[
\begin{pmatrix}
2 & -3 & -1 & 2 & 3 & 4 \\
0 & 2 & 1 & 0 & 5 & -4 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]

\(^5\text{http://www.sosmath.com}\)
Legendre function

Definition
Let $0 < a < n$. We say that a is a quadratic residue of n if there is and x such that $x^2 \mod n = a$.
Legendre function

Definition
Let 0 < a < n. We say that a is a quadratic residue of n if there is and x such that \(x^2 \mod n = a \).

Definition
Let \(p \) be a prime and \(a < p \) a positive integer. The Legendre symbol is a multiplicative function with values 1, -1, 0 that is a quadratic character modulo a prime number \(p \): its value on a quadratic residue mod \(p \) is 1 and on a non-quadratic residue is -1.
Fermat’s Theorem

Theorem

If \(x^2 \equiv y^2 \mod n \) and \(x \not\equiv \pm y \mod n \), then either \(\gcd(x + y, n) \) or \(\gcd(x - y, n) \) is a proper factor of \(n \).
Theorem

Suppose that p_k/q_k is the k-th convergent of \sqrt{n}. Then

$$p_k^2 - nq_k^2 = (-1)^{k+1}B_{k+1}.$$
Theorem

Suppose that p_k/q_k is the k-th convergent of \sqrt{n}. Then

$$p_k^2 - nq_k^2 = (-1)^{k+1} B_{k+1}.$$
CFRAC factoring method

Theorem

Suppose that \(\frac{p_k}{q_k} \) is the \(k \)-th convergent of \(\sqrt{n} \). Then

\[
p_k^2 - nq_k^2 = (-1)^{k+1} B_{k+1}.
\]

The theorem implies that

\[
p_k^2 = (-1)^{k+1} B_{k+1} \mod n
\]
Theorem

Suppose that p_k/q_k is the k-th convergent of \sqrt{n}. Then

$$p_k^2 - nq_k^2 = (-1)^{k+1}B_{k+1}.$$

The theorem implies that

$$p_k^2 = (-1)^{k+1}B_{k+1} \mod n$$

To apply the Fermat theorem we need squares on both sides.
Suppose that p_k/q_k is the k-th convergent of \sqrt{n}. Then

$$p_k^2 - nq_k^2 = (-1)^{k+1} B_{k+1}.$$

The theorem implies that

$$p_k^2 = (-1)^{k+1} B_{k+1} \pmod{n}$$

To apply the Fermat theorem we need squares on both sides. The idea of continued fractions is to generate pairs (p_k, B_{k+1}) and take suitable combinations to produce a square on the right and to possibly factor n.
Theorem

Suppose that p_k/q_k is the k-th convergent of \sqrt{n}. Then

$$p_k^2 - nq_k^2 = (-1)^{k+1} B_{k+1}.$$

The theorem implies that

$$p_k^2 = (-1)^{k+1} B_{k+1} \mod n$$

To apply the Fermat theorem we need squares on both sides. The idea of continued fractions is to generate pairs (p_k, B_{k+1}) and take suitable combinations to produce a square on the right and to possibly factor n. Recall that the integer is a perfect square if and only the exponents in the prime factorization are all even.
CFRAC factoring method

Theorem

Suppose that p_k/q_k is the k-th convergent of \sqrt{n}. Then

$$p_k^2 - nq_k^2 = (-1)^{k+1}B_{k+1}.$$

The theorem implies that

$$p_k^2 = (-1)^{k+1}B_{k+1} \mod n$$

To apply the Fermat theorem we need squares on both sides. The idea of continued fractions is to generate pairs (p_k, B_{k+1}) and take suitable combinations to produce a square on the right and to possibly factor n. Recall that the integer is a perfect square if and only the exponents in the prime factorization are all even.

Thus, to find the products of B_k’s that yield perfect square we obtain their prime factorization and combine them so that the exponents become even.
CFRAC factoring method

Theorem

Suppose that \(p_k/q_k \) is the \(k \)-th convergent of \(\sqrt{n} \). Then

\[
p_k^2 - nq_k^2 = (-1)^{k+1} B_{k+1}.
\]

The theorem implies that

\[
p_k^2 = (-1)^{k+1} B_{k+1} \mod n
\]

To apply the Fermat theorem we need squares on both sides. The idea of continued fractions is to generate pairs \((p_k, B_{k+1})\) and take suitable combinations to produce a square on the right and to possibly factor \(n \).

Recall that the integer is a perfect square if and only the exponents in the prime factorization are all even.

Thus, to find the products of \(B_k \)’s that yield perfect square we obtain their prime factorization and combine them so that the exponents become even. The factorization of \(B_k \) is obtained by trial division.
Select a set of primes over which B_k factors. If $p | B_k$ we have

$$p_k = nq_k^2 \mod p$$
Select a set of primes over which B_k factors. If $p|B_k$ we have

$$p_k = nq_k^2 \mod p$$

So n is a quadratic residue modulo p. Select a set of primes q such that $\text{legendre}(n, q) = 1$. This set of primes is called a factor base.
CFRAC Example

Table: Integer: $n = 4141$, Factor base: $2, 3, 5, 7, 11$

<table>
<thead>
<tr>
<th>$k + 1$</th>
<th>p_k</th>
<th>B_{k+1}</th>
<th>B_{k+1} factored</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>129</td>
<td>77</td>
<td>7^111^1</td>
</tr>
<tr>
<td>3</td>
<td>193</td>
<td>20</td>
<td>2^25^1</td>
</tr>
<tr>
<td>6</td>
<td>814</td>
<td>36</td>
<td>2^23^2</td>
</tr>
<tr>
<td>8</td>
<td>3719</td>
<td>21</td>
<td>3^17^1</td>
</tr>
<tr>
<td>11</td>
<td>2266</td>
<td>84</td>
<td>$2^23^17^1$</td>
</tr>
<tr>
<td>12</td>
<td>3463</td>
<td>33</td>
<td>3^111^1</td>
</tr>
<tr>
<td>13</td>
<td>232</td>
<td>9</td>
<td>3^2</td>
</tr>
<tr>
<td>14</td>
<td>2570</td>
<td>5</td>
<td>5^1</td>
</tr>
<tr>
<td>15</td>
<td>2367</td>
<td>84</td>
<td>$2^23^17^1$</td>
</tr>
<tr>
<td>17</td>
<td>3959</td>
<td>4</td>
<td>2^2</td>
</tr>
<tr>
<td>18</td>
<td>3436</td>
<td>105</td>
<td>$3^15^17^1$</td>
</tr>
<tr>
<td>19</td>
<td>3254</td>
<td>21</td>
<td>3^17^1</td>
</tr>
<tr>
<td>20</td>
<td>3142</td>
<td>20</td>
<td>2^25^1</td>
</tr>
</tbody>
</table>
Remark: We have to include -1 as an element in the factor base to take into account the negative sign when $k + 1$ is odd.

In general, suppose we have the factorization of B_k's:

\[
B_1 = p_{1}^{a_{11}} p_{2}^{a_{12}} \ldots p_{r}^{a_{1r}}
\]

\[
B_s = p_{1}^{a_{s1}} p_{2}^{a_{s2}} \ldots p_{r}^{a_{sr}}
\]

where p_1, p_2, \ldots, p_s are the primes of the factor base with $p_1 = -1$.
We need to find numbers e_1, e_2, \ldots, e_s that are either 0 or 1 such that

$$B_1^{e_1} B_2^{e_2} \ldots B_s^{e_s}$$

is a perfect square.
We need to find numbers $e_1, e_2, ..., e_s$ that are either 0 or 1 such that

$$B_1^{e_1} B_2^{e_2} ... B_s^{e_s}$$

is a perfect square.
We need to find numbers e_1, e_2, \ldots, e_s that are either 0 or 1 such that

$$B_1^{e_1} B_2^{e_2} \ldots B_s^{e_s}$$

is a perfect square.

$$B_1^{e_1} B_2^{e_2} \ldots B_s^{e_s} = (p_1^{a_{11}} p_2^{a_{21}} \ldots p_k^{a_{k1}})^{e_1} \cdot \ldots \cdot (p_1^{a_{1s}} p_2^{a_{2s}} \ldots p_k^{a_{ks}})^{e_s} =$$
We need to find numbers e_1, e_2, \ldots, e_s that are either 0 or 1 such that

$$B_1^{e_1} B_2^{e_2} \cdots B_s^{e_s}$$

is a perfect square.

$$B_1^{e_1} B_2^{e_2} \cdots B_s^{e_s} = (p_1^{a_{11}} p_2^{a_{21}} \cdots p_k^{a_{k1}})^{e_1} \cdot \cdots \cdot (p_1^{a_{1s}} p_2^{a_{2s}} \cdots p_k^{a_{ks}})^{e_s} =$$

$$= p_1^{a_{11}e_1 + a_{12}e_2 + \cdots + a_{1s}e_s} \cdot \cdots \cdot p_k^{a_{k1}e_1 + a_{k2}e_2 + \cdots + a_{ks}e_s}$$
We need to find numbers e_1, e_2, \ldots, e_s that are either 0 or 1 such that

$$B_1^{e_1} B_2^{e_2} \cdots B_s^{e_s}$$

is a perfect square.

$$B_1^{e_1} B_2^{e_2} \cdots B_s^{e_s} = (p_1^{a_{11}} p_2^{a_{21}} \cdots p_k^{a_{k1}})^{e_1} \cdot \cdots \cdot (p_1^{a_{1s}} p_2^{a_{2s}} \cdots p_k^{a_{ks}})^{e_s} =

= p_1^{a_{11} e_1 + a_{12} e_2 + \cdots + a_{1s} e_s} \cdot \cdots \cdot p_k^{a_{k1} e_1 + a_{k2} e_2 + \cdots + a_{ks} e_s}$$

We need to find e_1, e_2, \ldots, e_s such that $e_1 a_{1i} + e_2 a_{2i} + \cdots + e_s a_{si}$ is even for all i.
CFRAC factoring method

We need to solve the system of linear equation

\[a_{11}e_1 + a_{12}e_2 + \ldots + a_{1s}e_s = 0 \mod 2 \]
\[a_{21}e_1 + a_{22}e_2 + \ldots + a_{2s}e_s = 0 \mod 2 \]
\[\ldots \]
\[a_{k1}e_1 + a_{k2}e_2 + \ldots + a_{ks}e_s = 0 \mod 2 \]

i.e. to solve the matrix equation \(Ae = 0 \), where \(e = (e_1, e_2, \ldots, e_s) \) and \(A \) is the matrix whose \(ij \)-th entry is \(a_{ij} \).
We need to solve the system of linear equation

\[
\begin{align*}
a_{11}e_1 + a_{12}e_2 + \ldots + a_{1s}e_s &= 0 \mod 2 \\
a_{21}e_1 + a_{22}e_2 + \ldots + a_{2s}e_s &= 0 \mod 2 \\
\vdots \\
a_{k1}e_1 + a_{k2}e_2 + \ldots + a_{ks}e_s &= 0 \mod 2
\end{align*}
\]

i.e. to solve the matrix equation \(A\mathbf{e} = 0 \), where \(\mathbf{e} = (e_1, e_2, \ldots, e_s) \) and \(A \) is the matrix whose \(ij \)-th entry is \(a_{ij} \).

The equation \(A\mathbf{e} = 0 \) can be solved by Gaussian elimination modulo 2.
We need to solve the system of linear equations

\[
\begin{align*}
 a_{11}e_1 + a_{12}e_2 + \ldots + a_{1s}e_s &= 0 \mod 2 \\
 a_{21}e_1 + a_{22}e_2 + \ldots + a_{2s}e_s &= 0 \mod 2 \\
 \vdots \\
 a_{k1}e_1 + a_{k2}e_2 + \ldots + a_{ks}e_s &= 0 \mod 2
\end{align*}
\]

i.e. to solve the matrix equation \(Ae = 0 \), where \(e = (e_1, e_2, \ldots, e_s) \) and \(A \) is the matrix whose \(ij \)-th entry is \(a_{ij} \).

The equation \(Ae = 0 \) can be solved by Gaussian elimination modulo 2.

If \(s > r \) then we are guaranteed a nontrivial solution.
Matrix of exponents modulo 2 for $n = 4141$

$$
A = \begin{pmatrix}
-1 & 2 & 3 & 5 & 7 & 11 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{pmatrix}
$$
The solutions yield combinations that will produce

\[p_{i_1}^2 p_{i_2}^2 \ldots p_{i_k}^2 = B_{i_1+1} B_{i_2+1} \ldots B_{i_k+1} \mod n \]
The solutions yield combinations that will produce

\[p_{i_1}^2 p_{i_2}^2 ... p_{i_k}^2 = B_{i_1+1} B_{i_2+1} ... B_{i_k+1} \mod n \]

where the expression \(B_{i_1+1} B_{i_2+1} ... B_{i_k+1} \) is a square.
The solutions yield combinations that will produce

\[p_{i_1}^2 p_{i_2}^2 \ldots p_{i_k}^2 = B_{i_1+1} B_{i_2+1} \ldots B_{i_k+1} \mod n \]

where the expression \(B_{i_1+1} B_{i_2+1} \ldots B_{i_k+1} \) is a square. It is possible that such combination does not yield a proper factor of \(n \).
Computing gcd’s:
Computing gcd's:

- $gcd(193 \cdot 3719 \cdot 2266 \cdot 3142 - 20 \cdot 3 \cdot 2 \cdot 7, n) = 4141$
Computing gcd's:

- $gcd(193 \cdot 3719 \cdot 2266 \cdot 3142 - 20 \cdot 3 \cdot 2 \cdot 7, n) = 4141$
- $gcd(193 \cdot 3719 \cdot 2266 \cdot 3142 - 20 \cdot 3 \cdot 2 \cdot 7, n) = 1$
Computing gcd’s:

- $gcd(193 \cdot 3719 \cdot 2266 \cdot 3142 - 20 \cdot 3 \cdot 2 \cdot 7, n) = 4141$
- $gcd(193 \cdot 3719 \cdot 2266 \cdot 3142 - 20 \cdot 3 \cdot 2 \cdot 7, n) = 1$
- $gcd(2266 \cdot 3254 - 2 \cdot 3 \cdot 7, n) = 41$
Computing \(\text{gcd}'s: \)

- \(\text{gcd}(193 \cdot 3719 \cdot 2266 \cdot 3142 - 20 \cdot 3 \cdot 2 \cdot 7, n) = 4141 \)
- \(\text{gcd}(193 \cdot 3719 \cdot 2266 \cdot 3142 - 20 \cdot 3 \cdot 2 \cdot 7, n) = 1 \)
- \(\text{gcd}(2266 \cdot 3254 - 2 \cdot 3 \cdot 7, n) = 41 \)
- \(\text{gcd}(2266 \cdot 3254 + 2 \cdot 3 \cdot 7, n) = 101 \)
Step 1 Expand \sqrt{n} (or \sqrt{cn}) into a simple continued fraction expansion to some point m i.e. $\sqrt{n} = [a_0, a_1, a_2, \ldots, a_m]$.
The CFRAC method

Step 1 Expand \sqrt{n} (or \sqrt{cn}) into a simple continued fraction expansion to some point m i.e. $\sqrt{n} = [a_0, a_1, a_2, ..., a_m]$.

Step 2 Generate “$p_k - B_k$ pairs”.

Step 3 Find among the set of “$p_k - B_k$ pairs” generated in the previous step certain subsets (called “S-sets”) each having the property that the product $\prod_i (-1)^i B_i$ of its B_i’s is a square. If no such set is found go to Step 1 and expand \sqrt{n}.

Step 4 Each S-set found in Step 3 gives rise to the congruence $X^2 \equiv \prod_i p_i \equiv \prod_i (-1)^i B_i \equiv Y^2 \pmod{n}$, where $1 \leq X < n$.

Step 5 Compute Y and the gcd($X - Y, n$) = d for the S-sets produced in Step 4. If $1 < d < n$ for some S-set, the method succeeds and d is non-trivial factor of n. Otherwise, return to Step 1.
The CFRAC method

Step 1 Expand \sqrt{n} (or \sqrt{cn}) into a simple continued fraction expansion to some point m i.e. $\sqrt{n} = [a_0, a_1, a_2, ..., a_m]$.

Step 2 Generate "$p_k - B_k$ pairs".

Step 3 Find among the set of "$p_k - B_k$ pairs" generated in the previous step certain subsets (called "S-sets") each having the property that the product $\prod_i (-1)^i B_i$ of its B_i's is a square.
The CFRAC method

Step 1 Expand \sqrt{n} (or \sqrt{cn}) into a simple continued fraction expansion to some point m i.e. $\sqrt{n} = [a_0, a_1, a_2, ..., a_m]$.

Step 2 Generate “$p_k - B_k$ pairs”.

Step 3 Find among the set of “$p_k - B_k$ pairs” generated in the previous step certain subsets (called “S-sets”) each having the property that the product $\prod_i (-1)^i B_i$ of its B_i’s is a square. If no such set is found go to Step 1 and expand \sqrt{n}.

Step 4 Each S-set found in Step 3 gives rise to the congruence $X^2 \equiv \prod_i p_i \equiv \prod_i (-1)^i B_i \equiv Y^2 \pmod{n}$, where $1 \leq X < n$.

Step 5 Compute Y and the $\gcd(X - Y, n) = d$ for the S-sets produced in Step 4. If $1 < d < n$ for some S-set, the method succeeds and d is a non-trivial factor of n. Otherwise, return to Step 1.
The CFRAC method

Step 1: Expand \sqrt{n} (or \sqrt{cn}) into a simple continued fraction expansion to some point m i.e. $\sqrt{n} = [a_0, a_1, a_2, ..., a_m]$.

Step 2: Generate “$p_k - B_k$ pairs”.

Step 3: Find among the set of “$p_k - B_k$ pairs” generated in the previous step certain subsets (called “S-sets”) each having the property that the product $\prod_i (-1)^i B_i$ of its B_i’s is a square. If no such set is found go to Step 1 and expand \sqrt{n}.

Step 4: Each S-set found in Step 3 gives rise to the congruence $X^2 \equiv \prod_i p_i \equiv \prod_i (-1)^i B_i = Y^2 \mod n$, where $1 \leq X < n$.

(Cryptology I) Continued Fractions Factoring method
The CFRAC method

Step 1 Expand \sqrt{n} (or \sqrt{cn}) into a simple continued fraction expansion to some point m i.e. $\sqrt{n} = [a_0, a_1, a_2, \ldots, a_m]$.

Step 2 Generate “$p_k - B_k$ pairs”.

Step 3 Find among the set of “$p_k - B_k$ pairs” generated in the previous step certain subsets (called “S-sets”) each having the property that the product $\prod_i (-1)^i B_i$ of its B_i’s is a square. If no such set is found go to Step 1 and expand \sqrt{n}.

Step 4 Each S-set found in Step 3 gives rise to the congruence $X^2 \equiv \prod_i p_i \equiv \prod_i (-1)^i B_i \equiv Y^2 \mod n$, where $1 \leq X < n$.

Step 5 Compute Y and the $gcd(X - Y, n) = d$ for the S-sets produced in Step 4. If $1 < d < n$ for some S-set, the method succeeds and d is non-trivial factor of n. Otherwise, return to Step 1.
The CFRAC method

Step 1. Expand \sqrt{n} (or \sqrt{cn}) into a simple continued fraction expansion to some point m i.e. $\sqrt{n} = [a_0, a_1, a_2, ..., a_m]$.

Step 2. Generate “$p_k - B_k$ pairs”.

Step 3. Find among the set of “$p_k - B_k$ pairs” generated in the previous step certain subsets (called “S-sets”) each having the property that the product $\prod_i (-1)^i B_i$ of its B_i’s is a square. If no such set is found go to Step 1 and expand \sqrt{n}.

Step 4. Each S-set found in Step 3 gives rise to the congruence

$$X^2 \equiv \prod_i p_i \equiv \prod_i (-1)^i B_i = Y^2 \mod n,$$

where $1 \leq X < n$.

Step 5. Compute Y and the $gcd(X - Y, n) = d$ for the S-sets produced in Step 4. If $1 < d < n$ for some S-set, the method succeeds and d is non-trivial factor of n. Otherwise, return to Step 1.