Quadratic Sieve Factoring Method - part 2

How it works

Define $Q(x) = x^2 - n$.

Pick integers $x_1, x_2, ..., x_k$ such that $Q(x_1), Q(x_2), ..., Q(x_k)$ factors over a chosen set of small primes.

From the set $\{x_1, x_2, ..., x_k\}$, pick a subset such that $Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r})$ is a perfect square, say A^2.

Check if $x_{i_1}^2 x_{i_2}^2 ... x_{i_r}^2 = A^2 \mod n$ gives the factorization of n.

Since $Q(x_i) = x_i^2 \mod n$ we have that $Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r}) = A^2 = (x_{i_1} x_{i_2} ... x_{i_r})^2 \mod n$.

Then, by Fermat's theorem we have that either $\gcd(x_{i_1} x_{i_2} ... x_{i_r} - A, n)$ or $\gcd(x_{i_1} x_{i_2} ... x_{i_r} + A, n)$ is a factor of n.

Quadratic Sieve Factoring Method - part 2
How it works

- Define $Q(x) = x^2 - n$
How it works

- Define $Q(x) = x^2 - n$
- Pick integers $x_1, x_2, ..., x_k$ such that $Q(x_1), Q(x_2), ..., Q(x_k)$ factors over a chosen set of small primes.
How it works

- Define $Q(x) = x^2 - n$
- Pick integers $x_1, x_2, ..., x_k$ such that $Q(x_1), Q(x_2), ..., Q(x_k)$ factors over a chosen set of small primes.
- From the set $\{x_1, x_2, ..., x_k\}$, pick a subset such that $Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r})$ is a perfect square, say A^2.
How it works

- Define $Q(x) = x^2 - n$
- Pick integers $x_1, x_2, ..., x_k$ such that $Q(x_1), Q(x_2), ..., Q(x_k)$ factors over a chosen set of small primes.
- From the set $\{x_1, x_2, ..., x_k\}$, pick a subset such that $Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r})$ is a perfect square, say A^2.
- Check if $x_{i_1}^2x_{i_2}^2, ..., x_{i_r}^2 = A^2 \mod n$ gives the factorization of n.
How it works

- Define $Q(x) = x^2 - n$
- Pick integers $x_1, x_2, ..., x_k$ such that $Q(x_1), Q(x_2), ..., Q(x_k)$ factors over a chosen set of small primes.
- From the set $\{x_1, x_2, ..., x_k\}$, pick a subset such that $Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r})$ is a perfect square, say A^2.
- Check if $x_1^2x_2^2, ..., x_{i_r}^2 = A^2 \mod n$ gives the factorization of n.
How it works

- Define \(Q(x) = x^2 - n \)
- Pick integers \(x_1, x_2, ..., x_k \) such that \(Q(x_1), Q(x_2), ..., Q(x_k) \) factors over a chosen set of small primes.
- From the set \(\{x_1, x_2, ..., x_k\} \), pick a subset such that \(Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r}) \) is a perfect square, say \(A^2 \).
- Check if \(x_1^2x_2^2, ..., x_{i_r}^2 = A^2 \ mod \ n \) gives the factorization of \(n \).

Since \(Q(x_i) = x_i^2 \ mod \ n \) we have that

\[
Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r})
\]
How it works

- Define $Q(x) = x^2 - n$
- Pick integers $x_1, x_2, ..., x_k$ such that $Q(x_1), Q(x_2), ..., Q(x_k)$ factors over a chosen set of small primes.
- From the set $\{x_1, x_2, ..., x_k\}$, pick a subset such that $Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r})$ is a perfect square, say A^2.
- Check if $x_{i_1}^2x_{i_2}^2, ..., x_{i_r}^2 = A^2 \mod n$ gives the factorization of n.

Since $Q(x_i) = x_i^2 \mod n$ we have that

$$Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r}) = A^2 =$$
How it works

- Define $Q(x) = x^2 - n$
- Pick integers $x_1, x_2, ..., x_k$ such that $Q(x_1), Q(x_2), ..., Q(x_k)$ factors over a chosen set of small primes.
- From the set $\{x_1, x_2, ..., x_k\}$, pick a subset such that $Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r})$ is a perfect square, say A^2.
- Check if $x_1^2x_2^2, ..., x_{i_r}^2 = A^2 \mod n$ gives the factorization of n.

Since $Q(x_i) = x_i^2 \mod n$ we have that

$$Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r}) = A^2 = (x_{i_1}x_{i_2}...x_{i_r})^2 \mod n.$$
How it works

- Define $Q(x) = x^2 - n$
- Pick integers $x_1, x_2, ..., x_k$ such that $Q(x_1), Q(x_2), ..., Q(x_k)$ factors over a chosen set of small primes.
- From the set $\{x_1, x_2, ..., x_k\}$, pick a subset such that $Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r})$ is a perfect square, say A^2.
- Check if $x_1^2x_2^2, ..., x_r^2 = A^2 \mod n$ gives the factorization of n.

Since $Q(x_i) = x_i^2 \mod n$ we have that

$$Q(x_{i_1})Q(x_{i_2})...Q(x_{i_r}) = A^2 = (x_{i_1}x_{i_2}...x_{i_r})^2 \mod n.$$

Then, by Fermat's theorem we have that either $gcd(x_{i_1}x_{i_2}...x_{i_r} - A, n)$ or $gcd(x_{i_1}x_{i_2}...x_{i_r} + A, n)$ is a factor of n.

Defining a sieving interval and constructing a factor base

Define a sieving interval $\left\lceil \frac{n}{2} \right\rceil - M, \left\lceil \frac{n}{2} \right\rceil + M$ with optimal value for $M = \exp\left(\frac{\ln(n)}{\ln(\ln(n))} \right) \frac{3}{4}$.

The integers x_i will be chosen from this interval.

Define a factor base to be the set of all primes p with $\text{legendre}(n, p) = 1$ and less than B and the number (-1).

The number B effects the number of primes in the factor base and depends on the size of n.

The optimal value for B is $\exp\left(\frac{1}{2} + o(1) \right) \left(\log n \log \log n \right)^{1/2}$.

For example, a factor base of 524,339 primes was used to factor RSA - 129.
Defining a sieving interval and constructing a factor base

Define a sieving interval \([\lceil n^{1/2} \rceil - M, \lceil n^{1/2} \rceil + M]\) with optimal value for \(M = \exp(\ln n \ln(\ln n))^{3\sqrt{2}/4}\).

The integers \(x_i\) will be chosen from this interval. Define a factor base to be the set of all primes \(p\) with \(\text{legendre}(n, p) = 1\) and less than \(B\) and the number \((-1)\). The number \(B\) effects the number of primes in the factor base and depends on the size of \(n\). The optimal value for \(B\) is \(\exp((1/2 + o(1))(\log n \log \log n))^{1/2}\). For example, a factor base of 524,339 primes was used to factor RSA - 129.
Defining a sieving interval and constructing a factor base

- Define a sieving interval $[\lceil n^{1/2} \rceil - M, \lceil n^{1/2} \rceil + M]$ with optimal value for $M = \exp(\ln n \ln(\ln n))^{3\sqrt{2}/4}$. The integers x_i will be chosen from this interval.
Defining a sieving interval and constructing a factor base

- Define a sieving interval \([\lceil n^{1/2} \rceil - M, \lceil n^{1/2} \rceil + M]\) with optimal value for \(M = \exp(\ln n \ln(\ln n))^{3\sqrt{2}/4}\). The integers \(x_i\) will be chosen from this interval.
- Define a factor base to be the set of all primes \(p\) with \(\text{legendre}(n, p) = 1\) and less than \(B\) and the number \((-1)\).
Define a sieving interval $\lceil n^{1/2} \rceil - M, \lceil n^{1/2} \rceil + M$ with optimal value for $M = \exp(lnnln(lnn))^{3\sqrt(2)/4}$. The integers x_i will be chosen from this interval.

Define a factor base to be the set of all primes p with $\text{legendre}(n, p) = 1$ and less than B and the number (-1). The number B effects the number of primes in the factor base and depends on the size of n.
Defining a sieving interval and constructing a factor base

- Define a sieving interval \([\lceil n^{1/2} \rceil - M, \lceil n^{1/2} \rceil + M]\) with optimal value for \(M = \exp(ln n \ln(n))^{3\sqrt(2)/4}\). The integers \(x_i\) will be chosen from this interval.

- Define a factor base to be the set of all primes \(p\) with \(\text{legendre}(n, p) = 1\) and less than \(B\) and the number \((-1)\). The number \(B\) effects the number of primes in the factor base and depends on the size of \(n\). The optimal value for \(B\) is \(\exp((1/2 + o(1))(\log n \log \log n)^{1/2})\).
Define a sieving interval \([\lceil n^{1/2} \rceil - M, \lceil n^{1/2} \rceil + M]\) with optimal value for \(M = \exp(\ln n \ln(\ln n))^{3\sqrt{2}/4}\). The integers \(x_i\) will be chosen from this interval.

Define a factor base to be the set of all primes \(p\) with \(\text{legendre}(n, p) = 1\) and less than \(B\) and the number \((-1)\). The number \(B\) effects the number of primes in the factor base and depends on the size of \(n\). The optimal value for \(B\) is \(\exp((1/2 + o(1))(\log n \log \log n)^{1/2})\).

For example, a factor base of 524,339 primes was used to factor RSA - 129.
Sieving

Suppose \(p \) is in the factor base for \(n \). For each \(p \) in the factor base use Tonelli-Shanks Algorithm to solve \(r^2 = n \mod p \) to find the roots \(r = \pm a_p \mod p \).

If \(p | Q(x) \), then \(x^2 = n = a_p^2 \mod p \), then \(x = \pm a_p \mod p \).

This means that if \(p | Q(x) \), then \(x = kp \pm a_p \).

This way we able to eliminate many \(Q(x) \)'s that do not factor over the factor base without obtaining a factorization of every \(Q(x) \) by trial division.

We are able to select \(Q(x) \)'s that are likely to be factored over the factorized base.
Suppose \(p \) is in the factor base for \(n \).
Suppose p is in the factor base for n.

- For each p in the factor base use Tonelli-Shanks Algorithm to solve $r^2 = n \mod p$ to find the roots $r = \pm a_p \mod p$.

This way we can eliminate many $Q(x)$'s that do not factor over the factor base without obtaining a factorization of every $Q(x)$ by trial division. We are able to select $Q(x)$'s that are likely to be factored over the factor base.
Suppose p is in the factor base for n.

- For each p in the factor base use Tonelli-Shanks Algorithm to solve $r^2 = n \mod p$ to find the roots $r = \pm a_p \mod p$.
- If $p | Q(x)$, then $x^2 = n = a_p^2 \mod p$, then $x = \pm a_p \mod p$.

This way we are able to eliminate many $Q(x)$'s that do not factor over the factor base without obtaining a factorization of every $Q(x)$ by trial division. We are able to select $Q(x)$'s that are likely to be factored over the factorized base.
Suppose \(p \) is in the factor base for \(n \).

- For each \(p \) in the factor base use Tonelli-Shanks Algorithm to solve \(r^2 = n \mod p \) to find the roots \(r = \pm a_p \mod p \).
- If \(p \mid Q(x) \), then \(x^2 = n = a_p^2 \mod p \), then \(x = \pm a_p \mod p \).
- This means that if \(p \mid Q(x) \), then \(x = kp \pm a_p \).
Suppose p is in the factor base for n.

- For each p in the factor base use Tonelli-Shanks Algorithm to solve $r^2 = n \mod p$ to find the roots $r = \pm a_p \mod p$.
- If $p | Q(x)$, then $x^2 = n = a_p^2 \mod p$, then $x = \pm a_p \mod p$.
- This means that if $p | Q(x)$, then $x = kp \pm a_p$.
- This way we able to eliminate many $Q(x)$’s that do not factor over the factor base without obtaining a factorization of every $Q(x)$ by trial division.
Suppose p is in the factor base for n.

- For each p in the factor base use Tonelli-Shanks Algorithm to solve $r^2 = n \mod p$ to find the roots $r = \pm a_p \mod p$.
- If $p | Q(x)$, then $x^2 = n = a_p^2 \mod p$, then $x = \pm a_p \mod p$.
- This means that if $p | Q(x)$, then $x = kp \pm a_p$.
- This way we able to eliminate many $Q(x)$’s that do not factor over the factor base without obtaining a factorization of every $Q(x)$ by trial division. We are able to select $Q(x)$’s that are likely to be factored over the factored base.
Let's $n = 17819$.

Let $\{2, 5, 7\}$ be the factor base and $[128, 138]$ be the sieving interval. Let $x \in [128, 138]$. Since $n = 1 \pmod{2}$, $Q(x)$ is divisible by 2 for x odd. Since $n = 4 \pmod{5}$, $Q(x)$ is divisible by 5 when $x = 2, 3 \pmod{5}$. Since $n = 4 \pmod{7}$, $Q(x)$ is divisible by 7 when $x = 2, 5 \pmod{7}$. We can eliminate $x = 130, 134, 136$ since $Q(x)$ for these values of x don't have factors from the factor base. The values of $Q(x)$ for $x = 128, 131, 133, 135, 137, 138$ are likely to factor over the primes in the factor base. It is easy to see that $Q(138) = 5^2 \cdot 7^2$. This term is a perfect square, so yields the congruence $138^2 = 35^2 \pmod{n}$. From here we get that $\gcd(138 - 35, n) = 103$ is one of the factors of n.

Quadratic Sieve Factoring Method - part 2
Let's $n = 17819$. Let $\{2, 5, 7\}$ be the factor base and
Let’s \(n = 17819 \). Let \(\{2, 5, 7\} \) be the factor base and \([128, 138] \) be the sieving interval.
Let's $n = 17819$. Let $\{2, 5, 7\}$ be the factor base and $[128, 138]$ be the sieving interval. Let $x \in [128, 138]$. Since $n = 1 \mod 2$,

Since $n = 4 \mod 5$, $Q(x)$ is divisible by 5 when $x = 2, 3 \mod 5$.

Since $n = 4 \mod 7$, $Q(x)$ is divisible by 7 when $x = 2, 5 \mod 7$. We can eliminate $x = 130, 134, 136$ since $Q(x)$ for these values of x don't have factors from the factor base.

The values of $Q(x)$ for $x = 128, 131, 133, 135, 137, 138$ are likely to factor over the primes in the factor base. It is easy to see that $Q(138) = 5^2 \cdot 7^2$. This term is a perfect square, so yields the congruence $138^2 \equiv 35^2 \mod n$. From here we get that $\gcd(138 - 35, n) = 103$ is one of the factors of n.

Quadratic Sieve Factoring Method - part 2
Let’s $n = 17819$. Let \{2, 5, 7\} be the factor base and [128, 138] be the sieving interval. Let $x \in [128, 138]$. Since $n = 1 \mod 2$, $Q(x)$ is divisible by 2 for x odd.
Let's \(n = 17819 \). Let \(\{2, 5, 7\} \) be the factor base and \([128, 138]\) be the sieving interval. Let \(x \in [128, 138] \). Since \(n = 1 \mod 2 \), \(Q(x) \) is divisible by 2 for \(x \) odd. Since \(n = 4 \mod 5 \),
Let's $n = 17819$. Let $\{2, 5, 7\}$ be the factor base and $[128, 138]$ be the sieving interval. Let $x \in [128, 138]$. Since $n = 1 \mod 2$, $Q(x)$ is divisible by 2 for x odd. Since $n = 4 \mod 5$, $Q(x)$ is divisible by 5 when $x = 2, 3 \mod 5$. We can eliminate $x = 130, 134, 136$ since $Q(x)$ for these values don't have factors from the factor base.

The values of $Q(x)$ for $x = 128, 131, 133, 135, 137, 138$ are likely to factor over the primes in the factor base. It is easy to see that $Q(138) = 5^2 \cdot 7^2$. This term is a perfect square, so yields the congruence $138^2 \equiv 35^2 \mod n$. From here we get that $\gcd(138 - 35, n) = 103$ is one of the factors of n.
Let's $n = 17819$. Let $\{2, 5, 7\}$ be the factor base and $[128, 138]$ be the sieving interval. Let $x \in [128, 138]$. Since $n = 1 \mod 2$, $Q(x)$ is divisible by 2 for x odd. Since $n = 4 \mod 5$, $Q(x)$ is divisible by 5 when $x = 2, 3 \mod 5$. Since $n = 4 \mod 7$, $Q(x)$ is divisible by 7 when $x = 2, 5 \mod 7$. We can eliminate $x = 130, 134, 136$ since $Q(x)$ for these values of x don't have factors from the factor base. The values of $Q(x)$ for $x = 128, 131, 133, 135, 137, 138$ are likely to factor over the primes in the factor base. It is easy to see that $Q(138) = 5^2 \cdot 7^2$. This term is a perfect square, so yields the congruence $138^2 \equiv 35^2 \mod n$. From here we get that $\gcd(138 - 35, n) = 103$ is one of the factors of n.
Let’s $n = 17819$. Let $\{2, 5, 7\}$ be the factor base and $[128, 138]$ be the sieving interval. Let $x \in [128, 138]$. Since $n = 1 \mod 2, Q(x)$ is divisible by 2 for x odd. Since $n = 4 \mod 5, Q(x)$ is divisible by 5 when $x = 2, 3 \mod 5$. Since $n = 4 \mod 7, Q(x)$ is divisible by 7 when $x = 2, 5 \mod 7$. We can eliminate
Let’s $n = 17819$. Let $\{2, 5, 7\}$ be the factor base and $[128, 138]$ be the sieving interval. Let $x \in [128, 138]$. Since $n = 1 \mod 2$, $Q(x)$ is divisible by 2 for x odd. Since $n = 4 \mod 5$, $Q(x)$ is divisible by 5 when $x = 2, 3 \mod 5$. Since $n = 4 \mod 7$, $Q(x)$ is divisible by 7 when $x = 2, 5 \mod 7$. We can eliminate $x = 130, 134, \text{ and } 136$.\[Q(138) = 5^2 \cdot 7^2\]This term is a perfect square, so yields the congruence $138^2 = 35^2 \mod n$. From here we get that $\gcd(138 - 35, n) = 103$ is one of the factors of n.\[103\]
Let’s $n = 17819$. Let \{2, 5, 7\} be the factor base and [128, 138] be the sieving interval. Let $x \in [128, 138]$. Since $n = 1 \mod 2$, $Q(x)$ is divisible by 2 for x odd. Since $n = 4 \mod 5$, $Q(x)$ is divisible by 5 when $x = 2, 3 \mod 5$. Since $n = 4 \mod 7$, $Q(x)$ is divisible by 7 when $x = 2, 5 \mod 7$. We can eliminate $x = 130, 134, \text{ and } 136$ since $Q(x)$ for these values of x don’t have factors from the factor base.

The values of $Q(x)$ for $x = 128, 131, 133, 135, 137, \text{ and } 138$ are likely to factor over the primes in the factor base. It is easy to see that $Q(138) = 5^2 \cdot 7^2$. This term is a perfect square, so yields the congruence $138^2 = 35^2 \mod n$. From here we get that $\gcd(138 - 35, n) = 103$ is one of the factors of n.

Quadratic Sieve Factoring Method - part 2

Sieving - example
Let’s $n = 17819$. Let $\{2, 5, 7\}$ be the factor base and $[128, 138]$ be the sieving interval. Let $x \in [128, 138]$. Since $n = 1 \mod 2, Q(x)$ is divisible by 2 for x odd. Since $n = 4 \mod 5, Q(x)$ is divisible by 5 when $x = 2, 3 \mod 5$. Since $n = 4 \mod 7, Q(x)$ is divisible by 7 when $x = 2, 5 \mod 7$. We can eliminate $x = 130, 134, \text{ and } 136$ since $Q(x)$ for these values of x don’t have factors from the factor base. The values of $Q(x)$ for $x = 128, 131, 133, 135, 137 \text{ and } 138$ are likely to factor over the primes in the factor base.
Let’s \(n = 17819 \). Let \(\{2, 5, 7\} \) be the factor base and \([128, 138]\) be the sieving interval. Let \(x \in [128, 138] \). Since \(n = 1 \mod 2 \), \(Q(x) \) is divisible by 2 for \(x \) odd. Since \(n = 4 \mod 5 \), \(Q(x) \) is divisible by 5 when \(x = 2, 3 \mod 5 \). Since \(n = 4 \mod 7 \), \(Q(x) \) is divisible by 7 when \(x = 2, 5 \mod 7 \). We can eliminate \(x = 130, 134, \) and 136 since \(Q(x) \) for these values of \(x \) don’t have factors from the factor base. The values of \(Q(x) \) for \(x = 128, 131, 133, 135, 137 \) and 138 are likely to factor over the primes in the factor base. It is easy to see that \(Q(138) = 5^2 \cdot 7^2 \). This term is a perfect square, so yields the congruence \(138^2 = 35^2 \mod n \). From here we get that \(\gcd(138 - 35, n) = 103 \) is one of the factors of \(n \).
Define $S(x) = \log(|Q(x)|) = \sum_{i=1}^{r} \log(p_i)$.

For each prime p in the factor base check if p divides $Q(x)$. If yes, subtract $\log(p)$ from $S(x)$. If not, eliminate that $Q(x)$ and go to the next $Q(x)$.
Speeding up the sieving

Define \(S(x) = \log(|Q(x)|) \)

For each prime \(p \) in the factor base check if \(p \) divides \(Q(x) \). If yes, subtract \(\log p \) from \(S(x) \). If not, eliminate that \(Q(x) \) and go to the next \(Q(x) \).
Speeding up the sieving

- Define $S(x) = \log(|Q(x)|) = \sum_{i=1}^{r} \log(p_i)$.
Define $S(x) = \log(|Q(x)|) = \sum_{i=1}^{r} \log(p_i)$.

For each prime p in the factor base check if p divides $Q(x)$.
Speeding up the sieving

- Define $S(x) = \log(|Q(x)|) = \sum_{i=1}^{r} \log(p_i)$.
- For each prime p in the factor base check if p divides $Q(x)$.
- If yes, subtract $\log p$ from $S(x)$. If not, eliminate that $Q(x)$ and go to the next $Q(x)$.

Quadratic Sieve Factoring Method - part 2
Speeding up the sieving

- Define $S(x) = \log(|Q(x)|) = \sum_{i=1}^{r} \log(p_i)$.
- For each prime p in the factor base check if p divides $Q(x)$.
- If yes, subtract $\log p$ from $S(x)$. If not, eliminate that $Q(x)$ and go to the next $Q(x)$.
Speeding up the sieving-Example

Let's $n = 87463$.

Let the set $\{2, 3, 13, 17, 19, 29\}$ be the factor base and $[195, 395]$ be the sieving interval. Then $S(x) = \log(|Q(x)|) < \log(p_{\text{max}}) = \log(29) = 3.36$. The only values of x for which $S(x) < 3.36$ are $x = 265, 278, 296, 307$ and 347. Here is the prime factorization of $Q(x)$'s:

- $x = 265$: $Q(x) = -1 \cdot 2 \cdot 3 \cdot 13^2 \cdot 17$
- $x = 278$: $Q(x) = -1 \cdot 3^3 \cdot 13 \cdot 29$
- $x = 296$: $Q(x) = 3^2 \cdot 17$
- $x = 299$: $Q(x) = 2 \cdot 3 \cdot 17 \cdot 19$
- $x = 307$: $Q(x) = 2 \cdot 3^2 \cdot 13 \cdot 19$
- $x = 347$: $Q(x) = 2 \cdot 3 \cdot 17^2 \cdot 19$
Speeding up the sieving - Example

Let's $n = 87463$. Let the set $\{2, 3, 13, 17, 19, 29\}$ be the factor base.
Speeding up the sieving - Example

Let's \(n = 87463 \). Let the set \(\{2, 3, 13, 17, 19, 29\} \) be the factor base and \([195, 395]\) be the sieving interval.

The only values of \(x \) for which \(S(x) < 3.36 \) are \(x = 265, 278, 296, 307 \) and \(347 \). Here is the prime factorization of \(Q(x) \):

- \(x = 265 \):
 \(Q(x) = -1 \cdot 2 \cdot 3 \cdot 13 \cdot 17^2 \cdot 19 \)

- \(x = 278 \):
 \(Q(x) = -1 \cdot 3^3 \cdot 13 \cdot 29 \)

- \(x = 296 \):
 \(Q(x) = 3^2 \cdot 17 \)

- \(x = 299 \):
 \(Q(x) = 2 \cdot 3 \cdot 17 \cdot 19 \)

- \(x = 307 \):
 \(Q(x) = 2 \cdot 3^2 \cdot 13 \cdot 19 \)

- \(x = 347 \):
 \(Q(x) = 2 \cdot 3 \cdot 17^2 \cdot 19 \)
Speeding up the sieving—Example

Let's $n = 87463$. Let the set $\{2, 3, 13, 17, 19, 29\}$ be the factor base and $[195, 395]$ be the sieving interval. Then

$$S(x) = \log(|Q(x)|) < \log(p_{max}) = \log(29) = 3.36.$$
Speeding up the sieving-Example

Let's \(n = 87463 \). Let the set \(\{2, 3, 13, 17, 19, 29\} \) be the factor base and \([195, 395]\) be the sieving interval. Then

\[
S(x) = \log(|Q(x)|) < \log(p_{max}) = \log(29) = 3.36.
\]

The only values of \(x \) for which \(S(x) < 3.36 \) are
Let's $n = 87463$. Let the set $\{2, 3, 13, 17, 19, 29\}$ be the factor base and $[195, 395]$ be the sieving interval. Then

$$S(x) = \log(|Q(x)|) < \log(p_{\text{max}}) = \log(29) = 3.36.$$

The only values of x for which $S(x) < 3.36$ are $x = 265, 278, 296, 307$ and 347.

Here is the prime factorization of $Q(x)$'s:

$x = 265$: $Q(x) = -1 \cdot 2 \cdot 3 \cdot 13^2 \cdot 17$

$x = 278$: $Q(x) = -1 \cdot 3^3 \cdot 13 \cdot 29$

$x = 296$: $Q(x) = 3^2 \cdot 17$

$x = 307$: $Q(x) = 2 \cdot 3 \cdot 17 \cdot 19$

$x = 347$: $Q(x) = 2 \cdot 3 \cdot 17^2 \cdot 19$
Speeding up the sieving - Example

Let's \(n = 87463 \). Let the set \(\{2, 3, 13, 17, 19, 29\} \) be the factor base and \([195, 395]\) be the sieving interval. Then

\[
S(x) = \log(|Q(x)|) < \log(p_{\text{max}}) = \log(29) = 3.36.
\]

The only values of \(x \) for which \(S(x) < 3.36 \) are \(x = 265, 278, 296, 307 \) and 347.

Here is the prime factorization of \(Q(x) \)'s:
Speeding up the sieving—Example

Let's $n = 87463$. Let the set $\{2, 3, 13, 17, 19, 29\}$ be the factor base and $[195, 395]$ be the sieving interval. Then

$$S(x) = \log(|Q(x)|) < \log(p_{max}) = \log(29) = 3.36.$$

The only values of x for which $S(x) < 3.36$ are $x=265, 278, 296, 307$ and 347.

Here is the prime factorization of $Q(x)$'s:

$x=265$: $Q(x) = -1 \cdot 2 \cdot 3 \cdot 13^2 \cdot 17$

$x=278$: $Q(x) = -1 \cdot 3^3 \cdot 13 \cdot 29$

$x=296$: $Q(x) = 3^2 \cdot 17$

$x=299$: $Q(x) = 2 \cdot 3 \cdot 17 \cdot 19$

$x=307$: $Q(x) = 2 \cdot 3^2 \cdot 13 \cdot 19$

$x=347$: $Q(x) = 2 \cdot 3 \cdot 17^2 \cdot 19$
Gaussian elimination

Assume the following factorization of the $Q(x)$ that are selected after the sieving process:

\[
Q(x_1) = p^{a_{11}} \cdot p^{a_{12}} \cdot \ldots \cdot p^{a_{1r}}
\]

\[
Q(x_k) = p^{a_{k1}} \cdot p^{a_{k2}} \cdot \ldots \cdot p^{a_{kr}}
\]

where p_1, p_2, \ldots, p_r are the primes from the factor base including -1. We have to find e_1, e_2, \ldots, e_k such that $Q(x_1)^{e_1} Q(x_2)^{e_2} \ldots Q(x_k)^{e_k}$ is a perfect square.

Using the prime factorization of $Q(x)$ we find the numbers e_1, e_2, \ldots, e_k such that $e_{a_{1i}} + e_{a_{2i}} + \ldots + e_{a_{ki}}$ is even for all $i = 1, 2, \ldots, r$.

We have to solve the equation $eA \equiv 0 \pmod{2}$ where $e = (e_1, e_2, \ldots, e_k)$ and A is the matrix whose ijth entry is a_{ij}.
Gaussian elimination

Assume the following factorization of the $Q(x)$ that are selected after the sieving process:
Gaussian elimination

Assume the following factorization of the $Q(x)$ that are selected after the sieving process:

$$Q(x_1) = p_1^{a_{11}} \cdot p_2^{a_{12}} \cdot \ldots \cdot p_r^{a_{1r}}$$

.............

$$Q(x_k) = p_1^{a_{k1}} \cdot p_2^{a_{k2}} \cdot \ldots \cdot p_r^{a_{kr}}$$
Gaussian elimination

Assume the following factorization of the $Q(x)$ that are selected after the sieving process:

$$Q(x_1) = p_1^{a_1} \cdot p_2^{a_2} \cdot ... \cdot p_r^{a_r}$$

...............

$$Q(x_k) = p_1^{a_{k1}} \cdot p_2^{a_{k2}} \cdot ... \cdot p_r^{a_{kr}}$$

where $p_1, p_2, ..., p_r$ are the primes from the factor base including (-1).
Gaussian elimination

Assume the following factorization of the $Q(x)$ that are selected after the sieving process:

$$Q(x_1) = p_1^{a_{11}} \cdot p_2^{a_{12}} \cdot \ldots \cdot p_r^{a_{1r}}$$

.............

$$Q(x_k) = p_1^{a_{k1}} \cdot p_2^{a_{k2}} \cdot \ldots \cdot p_r^{a_{kr}}$$

where p_1, p_2, \ldots, p_r are the primes from the factor base including (-1). We have to find e_1, e_2, \ldots, e_k such that
Gaussian elimination

Assume the following factorization of the $Q(x)$ that are selected after the sieving process:

$$Q(x_1) = p_1^{a_{11}} \cdot p_2^{a_{12}} \cdot \ldots \cdot p_r^{a_{1r}}$$

```

```

$$Q(x_k) = p_1^{a_{k1}} \cdot p_2^{a_{k2}} \cdot \ldots \cdot p_r^{a_{kr}}$$

where p_1, p_2, \ldots, p_r are the primes from the factor base including (-1). We have to find e_1, e_2, \ldots, e_k such that $Q(x_1)^{e_1} Q(x_2)^{e_2} \ldots Q(x_k)^{e_k}$ is a perfect square.
Gaussian elimination

Assume the following factorization of the $Q(x)$ that are selected after the sieving process:

$$Q(x_1) = p_1^{a_{11}} \cdot p_2^{a_{12}} \cdot \ldots \cdot p_r^{a_{1r}}$$

............

$$Q(x_k) = p_1^{a_{k1}} \cdot p_2^{a_{k2}} \cdot \ldots \cdot p_r^{a_{kr}}$$

where p_1, p_2, \ldots, p_r are the primes from the factor base including (-1). We have to find e_1, e_2, \ldots, e_k such that $Q(x_1)^{e_1}Q(x_2)^{e_2}\ldots Q(x_k)^{e_k}$ is a perfect square.

Using the prime factorization of $Q(x)$ we find the numbers e_1, e_2, \ldots, e_k such that
Gaussian elimination

Assume the following factorization of the $Q(x)$ that are selected after the sieving process:

\[Q(x_1) = p_1^{a_{11}} \cdot p_2^{a_{12}} \cdot \ldots \cdot p_r^{a_{1r}} \]

\[
\ldots \\
\]

\[Q(x_k) = p_1^{a_k1} \cdot p_2^{a_k2} \cdot \ldots \cdot p_r^{a_{kr}} \]

where p_1, p_2, \ldots, p_r are the primes from the factor base including (-1). We have to find e_1, e_2, \ldots, e_k such that $Q(x_1)^{e_1} Q(x_2)^{e_2} \ldots Q(x_k)^{e_k}$ is a perfect square.

Using the prime factorization of $Q(x)$ we find the numbers e_1, e_2, \ldots, e_k such that $e_1^{a_{1i}} + e_2^{a_{2i}} + \ldots + e_k^{a_{ki}}$ is even for all $i = 1, 2, \ldots, r.$
Gaussian elimination

Assume the following factorization of the $Q(x)$ that are selected after the sieving process:

$$Q(x_1) = p_1^{a_{11}} \cdot p_2^{a_{12}} \cdot \ldots \cdot p_r^{a_{1r}}$$

.............

$$Q(x_k) = p_1^{a_{k1}} \cdot p_2^{a_{k2}} \cdot \ldots \cdot p_r^{a_{kr}}$$

where p_1, p_2, \ldots, p_r are the primes from the factor base including (-1). We have to find e_1, e_2, \ldots, e_k such that $Q(x_1)^{e_1} Q(x_2)^{e_2} \ldots Q(x_k)^{e_k}$ is a perfect square.

Using the prime factorization of $Q(x)$ we find the numbers e_1, e_2, \ldots, e_k such that $e_1^{a_{1i}} + e_2^{a_{2i}} + \ldots + e_k^{a_{ki}}$ is even for all $i = 1, 2, \ldots, r$.

We have to solve the equation $eA = 0 \ mod \ 2$ where
Gaussian elimination

Assume the following factorization of the $Q(x)$ that are selected after the sieving process:

$$Q(x_1) = p_1^{a_{11}} \cdot p_2^{a_{12}} \cdot \ldots \cdot p_r^{a_{1r}}$$

..............

$$Q(x_k) = p_1^{a_{k1}} \cdot p_2^{a_{k2}} \cdot \ldots \cdot p_r^{a_{kr}}$$

where p_1, p_2, \ldots, p_r are the primes from the factor base including (-1). We have to find e_1, e_2, \ldots, e_k such that $Q(x_1)^{e_1} Q(x_2)^{e_2} \ldots Q(x_k)^{e_k}$ is a perfect square.

Using the prime factorization of $Q(x)$ we find the numbers e_1, e_2, \ldots, e_k such that $e_1^{a_{1i}} + e_2^{a_{2i}} + \ldots + e_k^{a_{ki}}$ is even for all $i = 1, 2, \ldots, r$.

We have to solve the equation $eA = 0 \mod 2$ where $e = (e_1, e_2, \ldots, e_k)$ and
Gaussian elimination

Assume the following factorization of the $Q(x)$ that are selected after the sieving process:

$$Q(x_1) = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_r^{a_r}$$

$$\ldots \ldots$$

$$Q(x_k) = p_1^{a_{k1}} \cdot p_2^{a_{k2}} \cdot \ldots \cdot p_r^{a_{kr}}$$

where p_1, p_2, \ldots, p_r are the primes from the factor base including (-1). We have to find e_1, e_2, \ldots, e_k such that $Q(x_1)^{e_1} Q(x_2)^{e_2} \ldots Q(x_k)^{e_k}$ is a perfect square.

Using the prime factorization of $Q(x)$ we find the numbers e_1, e_2, \ldots, e_k such that $e_1^{a_{1i}} + e_2^{a_{2i}} + \ldots + e_k^{a_{ki}}$ is even for all $i = 1, 2, \ldots, r$.

We have to solve the equation $eA = 0 \ mod \ 2$ where $e = (e_1, e_2, \ldots, e_k)$ and A is the matrix whose ijth entry is a_{ij}.
Gaussian elimination-Example

For $n = 87643$ we have the following matrix
Gaussian elimination-Example

For $n = 87643$ we have the following matrix:

$$
\begin{pmatrix}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0
\end{pmatrix}
$$
Gaussian elimination-Example

One solution of the equation $eA = 0 \mod 2$ is $e_1 = (0, 0, 1, 1, 0, 1)$.

From e_1 we have that $Q(x_3)Q(x_4)Q(x_6)$ is a perfect square.

We compute $d = \gcd((296 \cdot 299 \cdot 347 - 2 \cdot 3^2 \cdot 17 \cdot 19), n)$. Since $d = 1$ the first solution fails to yield a factor of n.

Another solution of $eA = 0 \mod 2$ is $e_2 = (1, 1, 1, 0, 1, 0)$.

From e_2 we have that $Q(x_1)Q(x_2)Q(x_3)Q(x_5)$ is a perfect square.

We compute $d = \gcd((265 \cdot 278 \cdot 296 \cdot 307 - 2 \cdot 3^4 \cdot 13 \cdot 17 \cdot 29), n)$. Since $d = 149$ we have a factor of n.
Gaussian elimination - Example

- One solution of the equation $eA = 0 \mod 2$ is $e_1 = (0, 0, 1, 1, 0, 1)$.

We compute $d = \gcd((296 \cdot 299 \cdot 347 - 2 \cdot 3^2 \cdot 17^2 \cdot 19), n)$. Since $d = 1$, the first solution fails to yield a factor of n.

Another solution of $eA = 0 \mod 2$ is $e_2 = (1, 1, 1, 0, 1, 0)$. From e_2 we have that $Q(x_1)Q(x_2)Q(x_3)Q(x_5)$ is a perfect square.

We compute $d = \gcd((265 \cdot 278 \cdot 296 \cdot 307 - 2 \cdot 3^4 \cdot 13 \cdot 17 \cdot 29), n)$. Since $d = 149$, we have a factor of n.

Quadratic Sieve Factoring Method - part 2
One solution of the equation $eA = 0 \mod 2$ is
$e_1 = (0, 0, 1, 1, 0, 1)$. From e_1 we have that
$Q(x_3)Q(x_4)Q(x_6)$ is a perfect square.
One solution of the equation $eA = 0 \mod 2$ is $e_1 = (0, 0, 1, 1, 0, 1)$. From e_1 we have that $Q(x_3)Q(x_4)Q(x_6)$ is a perfect square. We compute $d = \gcd((296 \cdot 299 \cdot 347 - 2 \cdot 3^2 \cdot 17^2 \cdot 19), n)$.
One solution of the equation $eA = 0 \text{ mod } 2$ is $e_1 = (0, 0, 1, 1, 0, 1)$. From e_1 we have that $Q(x_3)Q(x_4)Q(x_6)$ is a perfect square. We compute $d = \gcd((296 \cdot 299 \cdot 347 - 2 \cdot 3^2 \cdot 17^2 \cdot 19), n)$. Since $d = 1$ the first solution fails to yield a factor of n.
One solution of the equation $eA = 0 \mod 2$ is $e_1 = (0, 0, 1, 1, 0, 1)$. From e_1 we have that $Q(x_3)Q(x_4)Q(x_6)$ is a perfect square. We compute $d = \gcd((296 \cdot 299 \cdot 347 - 2 \cdot 3^2 \cdot 17^2 \cdot 19), n)$. Since $d = 1$ the first solution fails to yield a factor of n.

Another solution of $eA = 0 \mod 2$ is $e_2 = (1, 1, 1, 0, 1, 0)$.
Gaussian elimination—Example

- One solution of the equation $eA = 0 \mod 2$ is $e_1 = (0, 0, 1, 1, 0, 1)$. From e_1 we have that $Q(x_3)Q(x_4)Q(x_6)$ is a perfect square. We compute
 $$d = \gcd((296 \cdot 299 \cdot 347 - 2 \cdot 3^2 \cdot 17^2 \cdot 19), n)$$
 Since $d = 1$ the first solution fails to yield a factor of n.

- Another solution of $eA = 0 \mod 2$ is $e_2 = (1, 1, 1, 0, 1, 0)$. From e_2 we have that $Q(x_1)Q(x_2)Q(x_3)Q(x_5)$ is a perfect square.
One solution of the equation $eA = 0 \mod 2$ is $e_1 = (0, 0, 1, 1, 0, 1)$. From e_1 we have that $Q(x_3)Q(x_4)Q(x_6)$ is a perfect square. We compute $d = \gcd((296 \cdot 299 \cdot 347 - 2 \cdot 3^2 \cdot 17^2 \cdot 19), n)$. Since $d = 1$ the first solution fails to yield a factor of n.

Another solution of $eA = 0 \mod 2$ is $e_2 = (1, 1, 1, 0, 1, 0)$. From e_2 we have that $Q(x_1)Q(x_2)Q(x_3)Q(x_5)$ is a perfect square. We compute $d = \gcd((265 \cdot 278 \cdot 296 \cdot 307 - 2 \cdot 3^4 \cdot 13^2 \cdot 17 \cdot 29), n)$. Since $d = 149$ we have a factor of n.