SELECTIVE SCREENABILITY GAME
AND COVERING DIMENSION

LILJANA BABINKOSTOVA

ABSTRACT. We introduce an infinite two-person game inspired by the selective version of R. H. Bing’s notion of screenability. We show how, for metrizable spaces, this game is related to covering dimension.

1. Introduction

Let X be a topological space. In [3], R. H. Bing introduced the following notion of screenability: For each open cover \mathcal{U} of X there is a sequence $(\mathcal{V}_n : n < \infty)$ such that for each n, \mathcal{V}_n is a family of pairwise disjoint open sets; for each n, \mathcal{V}_n refines \mathcal{U} and $\bigcup_{n<\infty} \mathcal{V}_n$ is an open cover of X. In [1], David F. Addis and John H. Gresham introduced the selective version of screenability: For each sequence $(\mathcal{U}_n : n < \infty)$ of open covers of X there is a sequence $(\mathcal{V}_n : n < \infty)$ such that for each n, \mathcal{V}_n is a family of pairwise disjoint open sets; for each n, \mathcal{V}_n refines \mathcal{U}_n and $\bigcup_{n<\infty} \mathcal{V}_n$ is an open cover of X. It is evident that selective screenability implies screenability.

Selective screenability is an example of the following selection principle which was introduced in [2]: Let S be a set and let \mathcal{A} and \mathcal{B} be families of collections of subsets of the set S. Then $S_c(\mathcal{A}, \mathcal{B})$

2000 Mathematics Subject Classification. Primary 54D20, 54D45, 55M10, 91A44; Secondary 03E20.

Key words and phrases. covering dimension, infinite game, screenability, selection principle,

Supported by grant 13-1448/4-02 from the Ministry of Science, Republic of Macedonia.

Thus, if \mathcal{U} is a member of \mathcal{A} or of \mathcal{B}, then \mathcal{U} is a collection of subsets of S. 1
denotes the statement that for each sequence \((\mathcal{U}_n : n < \infty)\) of elements of \(\mathcal{A}\) there is a sequence \((\mathcal{V}_n : n < \infty)\) such that

1. for each \(n\), \(\mathcal{V}_n\) is a family of pairwise disjoint sets;
2. for each \(n\), \(\mathcal{V}_n\) refines \(\mathcal{U}_n\); and
3. \(\bigcup_{n<\infty} \mathcal{V}_n\) is a member of \(\mathcal{B}\).

With \(\mathcal{O}\) denoting the collection of all open covers of topological space \(X\), \(\mathcal{S}_{c}(\mathcal{O}, \mathcal{O})\) is selective screenability.

Addis and Gresham noted that countable dimensional metrizable spaces are selectively screenable and asked if the converse is true. Roman Pol, in [7], showed that the answer is no. We will now show that the countable dimensional metric spaces are exactly characterized by a game-theoretic version of selective screenability.

The following game, denoted \(G_c(\mathcal{A}, \mathcal{B})\), is naturally associated with \(\mathcal{S}_{c}(\mathcal{A}, \mathcal{B})\). Players ONE and TWO play as follows: In the \(n\)-th inning, ONE first chooses \(\mathcal{O}_n\), a member of \(\mathcal{A}\), and then TWO responds with \(\mathcal{T}_n\) which is pairwise disjoint and refines \(\mathcal{O}_n\). A play \((\mathcal{O}_1, \mathcal{T}_1, \ldots, \mathcal{O}_n, \mathcal{T}_n, \ldots)\) is won by TWO if \(\bigcup_{n<\infty} \mathcal{T}_n\) is a member of \(\mathcal{B}\); else, ONE wins. We can consider versions of different lengths of this game. For an ordinal number \(k\), let \(G^k_c(\mathcal{A}, \mathcal{B})\) be the game played as follows: In the \(l\)-th inning \((l < k)\), ONE first chooses \(\mathcal{O}_l\), a member of \(\mathcal{A}\), and then TWO responds with a pairwise disjoint \(\mathcal{T}_l\) which refines \(\mathcal{O}_l\). A play \(\mathcal{O}_0, \mathcal{T}_0, \ldots, \mathcal{O}_l, \mathcal{T}_l, \ldots l < k\) is won by TWO if \(\bigcup_{l<k} \mathcal{T}_l\) is a member of \(\mathcal{B}\); else, ONE wins. Thus, the game \(G_c(\mathcal{A}, \mathcal{B})\) is \(G^\omega_c(\mathcal{A}, \mathcal{B})\).

2. Main Results

From now on we assume that the spaces we work with are metrizable. We will see how selective screenability is related to covering dimension by showing that

1. a metrizable space is countable-dimensional if and only if TWO has a winning strategy in the game \(G^\omega_c(\mathcal{O}, \mathcal{O})\) (Theorem 2.2);
2. for each nonnegative integer \(n\), a metrizable space \(X\) is \(\leq n\)-dimensional if and only if TWO has a winning strategy in \(G^{n+1}_c(\mathcal{O}, \mathcal{O})\) (Theorem 2.4).
We will use the following result:

Lemma 2.1 ([6, Theorem II.XI.21.2]). Let X be a space and let Y be a subspace of X. Let $(V_i : i \in I)$ be a collection of subsets of Y open in Y. Then there is a collection $(U_i : i \in I)$ of open subsets of X such that for each $i \in I$, we have $V_i = Y \cap U_i$, and for each finite subset F of I, if $\cap_{i \in F} V_i = \emptyset$, then $\cap_{i \in F} U_i = \emptyset$.

Theorem 2.2. Let X be a metric space.

1. If X is countable dimensional, then TWO has a winning strategy in $G_\omega^{c(O, O)}$.
2. If TWO has a winning strategy in $G_\omega^{c(O, O)}$, then X is countable dimensional.

Proof of (1): Let X be countable dimensional, i.e., $X = \bigcup_{n < \infty} X_n$ where each X_n is zero-dimensional. We will define a Markov strategy (for definition, see [4]) σ for player TWO: For an open cover U of X and $n < \infty$, U is an open cover of X_n. Since X_n is zero-dimensional, find a pairwise disjoint family V of subsets of X_n open in X_n such that V covers X_n and refines U. By Lemma 2.1, choose a pairwise disjoint family $\sigma(U, n)$ of open subsets of X refining U such that each element V of V is of the form $U \cap X_n$ for some $U \in \sigma(U, n)$.

Now TWO plays as follows: In inning 1, ONE plays U_1, and TWO responds with $\sigma(U_1, 1)$, thus covering X_1. When ONE has played U_2 in the second inning, TWO responds with $\sigma(U_2, 2)$, thus covering X_2, and so on. And in the n-th inning, when ONE has chosen the cover U_n of X, TWO responds with $\sigma(U_n, n)$, covering X_n. This strategy evidently is a winning strategy for TWO.

Proof of (2): Let σ be a winning strategy for TWO. Let B be a base for the metric space X. For each n, let B_n be the family $\{B \in B : \text{diam}(B) < \frac{1}{n}\}$. Consider the plays of the game in which, in each inning, ONE plays U_1, and TWO responds with $\sigma(U_1, 1)$, thus covering X_1. When ONE has played U_2 in the second inning, TWO responds with $\sigma(U_2, 2)$, thus covering X_2, and so on. And in the n-th inning, when ONE has chosen the cover U_n of X, TWO responds with $\sigma(U_n, n)$, covering X_n. This strategy evidently is a winning strategy for TWO.

Define a family $(C_\tau : \tau \in <^\omega \mathbb{N})$ of subsets of X as

1. $C_\emptyset = \cap \{\cup \sigma(B_n) : n < \infty\}$;
2. for $\tau = (n_1, \ldots, n_k)$, $C_\tau = \cap \{\cup \sigma(B_{n_1}, \ldots, B_{n_k}, B_n) : n < \infty\}$.

We will show that $X = \bigcup \{C_\tau : \tau \in <^\omega \mathbb{N}\}$. Suppose, to the contrary, that $x \notin \bigcup \{C_\tau : \tau \in <^\omega \mathbb{N}\}$. Let us choose an n_1 such that $x \notin \sigma(B_{n_1})$. With n_1, \ldots, n_k chosen such that $x \notin \sigma(B_{n_1}, \ldots, B_{n_k})$,
let us choose an \(n_{k+1} \) such that \(x \notin \sigma(B_{n_1}, \ldots, B_{n_{k+1}}) \), and so on. Then
\[
B_{n_1}, \sigma(B_{n_1}), B_{n_2}, \sigma(B_{n_1}, B_{n_2}), \ldots
\]
is a \(\sigma \)-play lost by TWO, contradicting the fact that \(\sigma \) is a winning strategy for TWO.

Also, we will show that each \(C_\tau \) is zero-dimensional. Let \(x \in C_\tau \) and let \(\tau = (n_1, \ldots, n_k) \) be given. Thus, \(x \) is a member of \(\cap \{ \cup \sigma(B_{n_1}, \ldots, B_{n_k}, B_n) : n < \infty \} \). For each \(n \), choose a neighborhood \(V_n(x) \in \sigma(B_{n_1}, \ldots, B_{n_k}, B_n) \). Since for each \(n \) we have \(\text{diam}(V_n(x)) < \frac{1}{n} \), the set \(\{ V_n(x) \cap C_\tau : n < \infty \} \) is a neighborhood basis for \(x \) in \(C_\tau \). Also, we have that each \(V_n(x) \) is closed in \(C_\tau \) because of disjointness of TWO’s chosen sets. The set \(V = \cup \sigma(B_{n_1}, \ldots, B_{n_k}, B_n) \setminus V_n(x) \) is open in \(X \) and so \(C_\tau \setminus V_n(x) = C_\tau \setminus V \) is open in \(C_\tau \). Thus, each element of \(C_\tau \) has a basis consisting of clopen sets. □

Observe that in the proof of Theorem 2.2 we show:

Corollary 2.3. Let \(X \) be a metric space. The following are equivalent.

1. TWO has a winning strategy in \(G_\omega^\infty(O, O) \).
2. TWO has a winning Markov strategy in \(G_\omega^\infty(O, O) \).

The proof of the following theorem uses the ideas in the proof of Theorem 2.2.

Theorem 2.4. Let \(X \) be a metric space. The following are equivalent.

1. If \(X \) is \(\leq n \)-dimensional then TWO has a winning strategy in \(G_{\omega n+1}^\infty(O, O) \).
2. If TWO has a winning strategy in \(G_{\omega n+1}^\infty(O, O) \), then \(X \) is \(\leq n \)-dimensional.

From this theorem, we obtain that the metric space \(X \) is \(n \)-dimensional if and only if TWO has a winning strategy in \(G_{\omega n+1}^\infty(O, O) \) but not in \(G_{\omega}^\infty(O, O) \).

References

Department of Mathematics; Boise State University; Boise, ID 83725

E-mail address: liljanab@math.boisestate.edu