Please work in groups with no more than four people and complete this worksheet during class. Hand in one worksheet for each group.

1. Let \(f(x) = x^2 + 1 \).

 (a) Find the slope of the tangent line at any point \(x \) on the graph, i.e. calculate
 \[
 \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.
 \]

 (b) Find the slope of the tangent line at \(x = 2 \), i.e. calculate
 \[
 \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h}.
 \]
2. Use the formula \(A = \pi r^2 \) for the area of a circle to find

(a) the average rate at which the area of a circle changes with \(t \) as the radius increases from \(r = 1 \) to \(r = 2 \), i.e. calculate \(\frac{\Delta A}{\Delta r} \) over the interval \(r \in [1, 2] \).

(b) the instantaneous rate at which the area changes with \(r \) when \(r = 2 \), i.e. calculate

\[
\lim_{\Delta r \to 0} \frac{\Delta A}{\Delta r}.
\]
3. If a rock, initially at rest is dropped from a height of 400 ft its height after t seconds is given by

$$s(t) = -16t^2 + 400.$$

How long does it take to hit the ground and what is its velocity at impact?