1. Use the graph of a function \(g \) shown below to answer the following questions:

![Graph of function g](image)

(a) Find \(\lim_{x \to -2} g(x) \)

(b) Find \(\lim_{x \to -1^+} g(x) \)

(c) Where does \(g \) fail to be continuous?

(d) Where does \(g \) fail to be differentiable?

2. The following graph shows two continuous functions, \(f \) and \(g \), both with domains \((-\infty, \infty)\), where \(f \) is the linear function with the dashed plot. Use the graphs to compute

\[
\lim_{x \to \infty} (g(f(x))
\]
3. Use algebra and the limit laws to evaluate the following limits.

(10) (a) \(\lim_{x \to 3} (x^2 - 4x + 2) \)

(10) (b) \(\lim_{x \to 1} \frac{x^2 + 3x - 4}{x^2 - 1} \)

(10) (c) \(\lim_{x \to -\infty} \frac{\sqrt{x^2 + x - 1}}{x + 2} \)

(10) (d) \(\lim_{x \to 0^-} \frac{|x^2 - 1|}{x^2 - 1} \)
(10) 4. Use either the “$h \to 0$” or the “$x \to a$” definition of the derivative to find $f'(-2)$ if $f(x) = x^2 + 2x - 1$

(10) 5. Give an $\varepsilon-\delta$ proof to show

$$\lim_{x \to 2} (-3x + 5) = -1$$
(10) 6. Let \(f \) be a function whose values are always in the interval \([0, 1]\). Prove the equation \(f(x) - x = 0 \) has a solution in the interval \([0, 1]\).

(10) 7. Find an inverse for the function

\[
f(x) = \frac{2 - x}{3 + 2x}
\]